Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 23, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407087

RESUMO

BACKGROUND: Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. RESULTS: Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. CONCLUSIONS: Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Montagem e Desmontagem da Cromatina , Expressão Gênica , Genoma de Planta , Zea mays/genética
2.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457089

RESUMO

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes , Taxa de Mutação , Plantas Geneticamente Modificadas/genética
3.
J Org Chem ; 85(13): 8732-8739, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32482067

RESUMO

A photoredox protocol that uses a heteroleptic Cu (I) complex, [Cu(dq)(BINAP)]BF4, has been developed for the photodeprotection of benzenesulfonyl-protected N-heterocycles. A range of substrates was examined, including indazoles, indoles, pyrazoles, and benzimidazole, featuring both electron-rich and electron-deficient substituents, giving good yields of the N-heterocycle products with broad functional group tolerance. This transformation was also found to be amenable to flow reaction conditions.

4.
J Org Chem ; 83(18): 10933-10940, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30092130

RESUMO

C-H functionalization of electron-deficient heteroarenes using commercial unactivated alkyl halides through reductive quenching photoredox catalysis was developed. Mainstream approaches rely on the use of an excess of strong acids that result in regioselectivities dictated by the innate effect of the protonated heteroarene, leaving the functionalization of other carbons unexplored. We report a mild method under basic conditions that allows access to previously underexplored regioselectivities by relying on a combination of conjugate and halogen  ortho-directing effects. Overall, this methodology gives quick access to a variety of alkylated heteroarenes that will be of interest to medicinal chemistry programs.

5.
J Org Chem ; 83(3): 1551-1557, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29281285

RESUMO

The photoredox cross-coupling of aryl halides and potassium alkyl trifluoroborates is a very effective means to form Csp3-Csp2 bonds. However, this transformation is inefficient for the coupling of unactivated primary trifluoroborates. We have developed a generally useful, continuous flow Csp3-Csp2 coupling procedure for the synthesis of diverse product sets that is compatible with both trifluoroborates and silicate reagents. This universal protocol provides diversity sets from both primary and secondary coupling partners. This easily scalable procedure widens the substrate scope of the coupling reaction and is efficient for producing a greater range of analogues bearing a high sp3 fraction.

6.
Nature ; 464(7293): 1351-6, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20428171

RESUMO

Monozygotic or 'identical' twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4(+) lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among approximately 3.6 million single nucleotide polymorphisms (SNPs) or approximately 0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of approximately 19,000 genes in CD4(+) T cells. Only 2 to 176 differences in the methylation of approximately 2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to approximately 800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Assuntos
Epigênese Genética/genética , Genoma Humano/genética , Esclerose Múltipla/genética , RNA Mensageiro/genética , Gêmeos Monozigóticos/genética , Adolescente , Adulto , Desequilíbrio Alélico/genética , Mama/metabolismo , Neoplasias da Mama/genética , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Ilhas de CpG/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Predisposição Genética para Doença/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Masculino , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
7.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20075913

RESUMO

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Assuntos
Genoma de Planta/genética , Genômica , Glycine max/genética , Poliploidia , Arabidopsis/genética , Cruzamento , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes Duplicados/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Nodulação/genética , Locos de Características Quantitativas/genética , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico/genética , Óleo de Soja/biossíntese , Sintenia/genética , Fatores de Transcrição/genética
8.
J Biol Chem ; 288(1): 466-79, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23161544

RESUMO

Podophyllum species are sources of (-)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (-)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (-)-matairesinol into (-)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (-)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways.


Assuntos
Plantas Medicinais/metabolismo , Podofilotoxina/biossíntese , Podophyllum/metabolismo , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Catálise , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Factuais , Regulação da Expressão Gênica de Plantas , Lignanas/química , Microssomos/metabolismo , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Extratos Vegetais/química , Homologia de Sequência de Aminoácidos , Transcriptoma
9.
Syst Biol ; 62(3): 424-38, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23417680

RESUMO

Genome-scale data offer the opportunity to clarify phylogenetic relationships that are difficult to resolve with few loci, but they can also identify genomic regions with evolutionary history distinct from that of the species history. We collected whole-genome sequence data from 29 taxa in the legume genus Medicago, then aligned these sequences to the Medicago truncatula reference genome to confidently identify 87 596 variable homologous sites. We used this data set to estimate phylogenetic relationships among Medicago species, to investigate the number of sites needed to provide robust phylogenetic estimates and to identify specific genomic regions supporting topologies in conflict with the genome-wide phylogeny. Our full genomic data set resolves relationships within the genus that were previously intractable. Subsampling the data reveals considerable variation in phylogenetic signal and power in smaller subsets of the data. Even when sampling 5000 sites, no random sample of the data supports a topology identical to that of the genome-wide phylogeny. Phylogenetic relationships estimated from 500-site sliding windows revealed genome regions supporting several alternative species relationships among recently diverged taxa, consistent with the expected effects of deep coalescence or introgression in the recent history of Medicago.


Assuntos
Genoma de Planta , Medicago/genética , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Cloroplastos/genética , Evolução Molecular , Biblioteca Gênica , Medicago/citologia , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 108(42): E864-70, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949378

RESUMO

Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.


Assuntos
Medicago truncatula/genética , DNA de Plantas/genética , Fabaceae/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Recombinação Genética
11.
Plant Physiol ; 158(4): 1745-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22319075

RESUMO

Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes.


Assuntos
Genes de Plantas/genética , Estudos de Associação Genética , Glycine max/genética , Glycine max/metabolismo , Ferro/metabolismo , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Endogamia , Repetições de Microssatélites/genética , Modelos Moleculares , Anotação de Sequência Molecular , Fenótipo , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
BMC Genomics ; 13: 568, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23107476

RESUMO

BACKGROUND: Alfalfa, a perennial, outcrossing species, is a widely planted forage legume producing highly nutritious biomass. Currently, improvement of cultivated alfalfa mainly relies on recurrent phenotypic selection. Marker assisted breeding strategies can enhance alfalfa improvement efforts, particularly if many genome-wide markers are available. Transcriptome sequencing enables efficient high-throughput discovery of single nucleotide polymorphism (SNP) markers for a complex polyploid species. RESULT: The transcriptomes of 27 alfalfa genotypes, including elite breeding genotypes, parents of mapping populations, and unimproved wild genotypes, were sequenced using an Illumina Genome Analyzer IIx. De novo assembly of quality-filtered 72-bp reads generated 25,183 contigs with a total length of 26.8 Mbp and an average length of 1,065 bp, with an average read depth of 55.9-fold for each genotype. Overall, 21,954 (87.2%) of the 25,183 contigs represented 14,878 unique protein accessions. Gene ontology (GO) analysis suggested that a broad diversity of genes was represented in the resulting sequences. The realignment of individual reads to the contigs enabled the detection of 872,384 SNPs and 31,760 InDels. High resolution melting (HRM) analysis was used to validate 91% of 192 putative SNPs identified by sequencing. Both allelic variants at about 95% of SNP sites identified among five wild, unimproved genotypes are still present in cultivated alfalfa, and all four US breeding programs also contain a high proportion of these SNPs. Thus, little evidence exists among this dataset for loss of significant DNA sequence diversity from either domestication or breeding of alfalfa. Structure analysis indicated that individuals from the subspecies falcata, the diploid subspecies caerulea, and the tetraploid subspecies sativa (cultivated tetraploid alfalfa) were clearly separated. CONCLUSION: We used transcriptome sequencing to discover large numbers of SNPs segregating in elite breeding populations of alfalfa. Little loss of SNP diversity was evident between unimproved and elite alfalfa germplasm. The EST and SNP markers generated from this study are publicly available at the Legume Information System ( http://medsa.comparative-legumes.org/) and can contribute to future alfalfa research and breeding applications.


Assuntos
Genes de Plantas , Marcadores Genéticos , Medicago sativa/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Alelos , Cruzamento , Genótipo , Mutação INDEL , Medicago sativa/classificação , Desnaturação de Ácido Nucleico , Filogenia , Ploidias , Análise de Componente Principal , Análise de Sequência de DNA
13.
Am J Bot ; 99(2): 383-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301896

RESUMO

PREMISE OF THE STUDY: RNA-seq analysis of plant transcriptomes poses unique challenges due to the highly duplicated nature of plant genomes. We address these challenges in the context of recently formed polyploid species and detail an RNA-seq experiment comparing the leaf transcriptome profile of an allopolyploid relative of soybean with the diploid species that contributed its homoeologous genomes. METHODS: RNA-seq reads were obtained from the three species and were aligned against the genome sequence of Glycine max. Transcript levels were estimated for each gene, relative contributions of polyploidy-duplicated loci (homoeologues) in the tetraploid were identified, and comparisons of transcript profiles and individual genes were used to analyze the regulation of transcript levels. KEY RESULTS: We present a novel metric developed to address issues arising from high degrees of gene space duplication and a method for dissecting a gene's measured transcript level in a polyploid species into the relative contribution of its homoeologues. We identify the gene family likely contributing to differences in photosynthetic rate between the allotetraploid and its progenitors and show that the tetraploid appears to be using the "redundant" gene copies in novel ways. CONCLUSIONS: Given the prevalence of polyploidy events in plants, we believe many of the approaches developed here to be applicable, and often necessary, in most plant RNA-seq experiments. The deep sampling provided by RNA-seq allows us to dissect the genetic underpinnings of specific phenotypes as well as examine complex interactions within polyploid genomes.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas , Análise de Sequência de RNA/métodos , Tetraploidia , Transcriptoma , Sequência de Bases , Clorofila/análise , Simulação por Computador , Genes de Plantas , Modelos Genéticos , Fenótipo , Fotossíntese/genética , Folhas de Planta/genética , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Glycine max/genética
14.
Am J Bot ; 99(2): 186-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301893

RESUMO

PREMISE OF THE STUDY: Next-generation sequencing (NGS) technologies are frequently used for resequencing and mining of single nucleotide polymorphisms (SNPs) by comparison to a reference genome. In crop species such as chickpea (Cicer arietinum) that lack a reference genome sequence, NGS-based SNP discovery is a challenge. Therefore, unlike probability-based statistical approaches for consensus calling and by comparison with a reference sequence, a coverage-based consensus calling (CbCC) approach was applied and two genotypes were compared for SNP identification. METHODS: A CbCC approach is used in this study with four commonly used short read alignment tools (Maq, Bowtie, Novoalign, and SOAP2) and 15.7 and 22.1 million Illumina reads for chickpea genotypes ICC4958 and ICC1882, together with the chickpea trancriptome assembly (CaTA). KEY RESULTS: A nonredundant set of 4543 SNPs was identified between two chickpea genotypes. Experimental validation of 224 randomly selected SNPs showed superiority of Maq among individual tools, as 50.0% of SNPs predicted by Maq were true SNPs. For combinations of two tools, greatest accuracy (55.7%) was reported for Maq and Bowtie, with a combination of Bowtie, Maq, and Novoalign identifying 61.5% true SNPs. SNP prediction accuracy generally increased with increasing reads depth. CONCLUSIONS: This study provides a benchmark comparison of tools as well as read depths for four commonly used tools for NGS SNP discovery in a crop species without a reference genome sequence. In addition, a large number of SNPs have been identified in chickpea that would be useful for molecular breeding.


Assuntos
Cicer/genética , Sequência Consenso , Produtos Agrícolas/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Variação Genética , Genótipo , Padrões de Referência , Reprodutibilidade dos Testes , Alinhamento de Sequência/métodos , Transcriptoma
15.
BMC Plant Biol ; 11: 56, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21447154

RESUMO

BACKGROUND: Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. RESULTS: A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. CONCLUSION: In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.


Assuntos
Cajanus/genética , Quimera/genética , Cromossomos Artificiais Bacterianos/genética , Repetições de Microssatélites , Sequência de Bases , Mapeamento Cromossômico , Marcadores Genéticos , Genótipo , Hibridização Genética , Dados de Sequência Molecular
16.
Plant Biotechnol J ; 9(8): 922-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21615673

RESUMO

Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly because of biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing technologies such as Roche/454 and Illumina/Solexa were used to determine the sequence of most gene transcripts and to identify drought-responsive genes and gene-based molecular markers. A total of 103,215 tentative unique sequences (TUSs) have been produced from 435,018 Roche/454 reads and 21,491 Sanger expressed sequence tags (ESTs). Putative functions were determined for 49,437 (47.8%) of the TUSs, and gene ontology assignments were determined for 20,634 (41.7%) of the TUSs. Comparison of the chickpea TUSs with the Medicago truncatula genome assembly (Mt 3.5.1 build) resulted in 42,141 aligned TUSs with putative gene structures (including 39,281 predicted intron/splice junctions). Alignment of ∼37 million Illumina/Solexa tags generated from drought-challenged root tissues of two chickpea genotypes against the TUSs identified 44,639 differentially expressed TUSs. The TUSs were also used to identify a diverse set of markers, including 728 simple sequence repeats (SSRs), 495 single nucleotide polymorphisms (SNPs), 387 conserved orthologous sequence (COS) markers, and 2088 intron-spanning region (ISR) markers. This resource will be useful for basic and applied research for genome analysis and crop improvement in chickpea.


Assuntos
Mapeamento Cromossômico/métodos , Cicer/genética , Perfilação da Expressão Gênica/métodos , Genoma de Planta , África , Ásia , Cicer/metabolismo , Cicer/fisiologia , Secas , Metabolismo Energético , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Marcadores Genéticos , Genótipo , Íntrons , Medicago truncatula/genética , Repetições de Microssatélites , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência/métodos , Estresse Fisiológico , Fatores de Transcrição/genética
17.
Plant Physiol ; 152(2): 541-52, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19933387

RESUMO

Nodulation is the result of a mutualistic interaction between legumes and symbiotic soil bacteria (e.g. soybean [Glycine max] and Bradyrhizobium japonicum) initiated by the infection of plant root hair cells by the symbiont. Fewer than 20 plant genes involved in the nodulation process have been functionally characterized. Considering the complexity of the symbiosis, significantly more genes are likely involved. To identify genes involved in root hair cell infection, we performed a large-scale transcriptome analysis of B. japonicum-inoculated and mock-inoculated soybean root hairs using three different technologies: microarray hybridization, Illumina sequencing, and quantitative real-time reverse transcription-polymerase chain reaction. Together, a total of 1,973 soybean genes were differentially expressed with high significance during root hair infection, including orthologs of previously characterized root hair infection-related genes such as NFR5 and NIN. The regulation of 60 genes was confirmed by quantitative real-time reverse transcription-polymerase chain reaction. Our analysis also highlighted changes in the expression pattern of some homeologous and tandemly duplicated soybean genes, supporting their rapid specialization.


Assuntos
Bradyrhizobium/fisiologia , Perfilação da Expressão Gênica , Glycine max/genética , Raízes de Plantas/microbiologia , Simbiose , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Glycine max/microbiologia
18.
Plant Physiol ; 154(1): 3-12, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656899

RESUMO

Near-isogenic lines (NILs) are valuable genetic resources for many crop species, including soybean (Glycine max). The development of new molecular platforms promises to accelerate the mapping of genetic introgressions in these materials. Here, we compare some existing and emerging methodologies for genetic introgression mapping: single-feature polymorphism analysis, Illumina GoldenGate single nucleotide polymorphism (SNP) genotyping, and de novo SNP discovery via RNA-Seq analysis of next-generation sequence data. We used these methods to map the introgressed regions in an iron-inefficient soybean NIL and found that the three mapping approaches are complementary when utilized in combination. The comparative RNA-Seq approach offers several additional advantages, including the greatest mapping resolution, marker depth, and de novo marker utility for downstream fine-mapping analysis. We applied the comparative RNA-Seq method to map genetic introgressions in an additional pair of NILs exhibiting differential seed protein content. Furthermore, we attempted to optimize the comparative RNA-Seq approach by assessing the impact of sequence depth, SNP identification methodology, and post hoc analyses on SNP discovery rates. We conclude that the comparative RNA-Seq approach can be optimized with sufficient sampling and by utilizing a post hoc correction accounting for gene density variation that controls for false discoveries.


Assuntos
Mapeamento Cromossômico/métodos , Genômica/métodos , Glycine max/genética , Endogamia , Cromossomos de Plantas/genética , Biblioteca Gênica , Genes de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
19.
Genome ; 54(1): 10-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21217801

RESUMO

Studies have indicated that exon and intron size and intergenic distance are correlated with gene expression levels and expression breadth. Previous reports on these correlations in plants and animals have been conflicting. In this study, next-generation sequence data, which has been shown to be more sensitive than previous expression profiling technologies, were generated and analyzed from 14 tissues. Our results revealed a novel dichotomy. At the low expression level, an increase in expression breadth correlated with an increase in transcript size because of an increase in the number of exons and introns. No significant changes in intron or exon sizes were noted. Conversely, genes expressed at the intermediate to high expression levels displayed a decrease in transcript size as their expression breadth increased. This was due to smaller exons, with no significant change in the number of exons. Taking advantage of the known gene space of soybean, we evaluated the positioning of genes and found significant clustering of similarly expressed genes. Identifying the correlations between the physical parameters of individual genes could lead to uncovering the role of regulation owing to nucleotide composition, which might have potential impacts in discerning the role of the noncoding regions.


Assuntos
Éxons/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glycine max/genética , Íntrons/genética , Animais , DNA Intergênico/genética , Perfilação da Expressão Gênica
20.
BMC Genomics ; 11: 38, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20078886

RESUMO

BACKGROUND: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. RESULTS: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. CONCLUSION: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8x whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.


Assuntos
DNA de Plantas/análise , Genoma de Planta , Glycine max/química , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , DNA de Plantas/genética , Bases de Dados de Ácidos Nucleicos , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA