RESUMO
Intratumor heterogeneity is a main cause of the dismal prognosis of glioblastoma (GBM). Yet, there remains a lack of a uniform assessment of the degree of heterogeneity. With a multiscale approach, we addressed the hypothesis that intratumor heterogeneity exists on different levels comprising traditional regional analyses, but also innovative methods including computer-assisted analysis of tumor morphology combined with epigenomic data. With this aim, 157 biopsies of 37 patients with therapy-naive IDH-wildtype GBM were analyzed regarding the intratumor variance of protein expression of glial marker GFAP, microglia marker Iba1 and proliferation marker Mib1. Hematoxylin and eosin stained slides were evaluated for tumor vascularization. For the estimation of pixel intensity and nuclear profiling, automated analysis was used. Additionally, DNA methylation profiling was conducted separately for the single biopsies. Scoring systems were established to integrate several parameters into one score for the four examined modalities of heterogeneity (regional, cellular, pixel-level and epigenomic). As a result, we could show that heterogeneity was detected in all four modalities. Furthermore, for the regional, cellular and epigenomic level, we confirmed the results of earlier studies stating that a higher degree of heterogeneity is associated with poorer overall survival. To integrate all modalities into one score, we designed a predictor of longer survival, which showed a highly significant separation regarding the OS. In conclusion, multiscale intratumor heterogeneity exists in glioblastoma and its degree has an impact on overall survival. In future studies, the implementation of a broadly feasible heterogeneity index should be considered.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , PrognósticoRESUMO
Tumor heterogeneity is considered to be a hallmark of glioblastoma (GBM). Only more recently, it has become apparent that GBM is not only heterogeneous between patients (intertumoral heterogeneity) but more importantly, also within individual patients (intratumoral heterogeneity). In this study, we focused on assessing intratumoral heterogeneity. For this purpose, the heterogeneity of 38 treatment-naïve GBM was characterized by immunohistochemistry. Perceptible areas were rated for ALDH1A3, EGFR, GFAP, Iba1, Olig2, p53, and Mib1. By clustering methods, two distinct groups similar to subtypes described in literature were detected. The classical subtype featured a strong EGFR and Olig2 positivity, whereas the mesenchymal subtype displayed a strong ALDH1A3 expression and a high fraction of Iba1-positive microglia. 18 tumors exhibited both subtypes and were classified as "subtype-heterogeneous", whereas the areas of the other tumors were all assigned to the same cluster and named "subtype-dominant". Results of epigenomic analyses corroborated these findings. Strikingly, the subtype-heterogeneous tumors showed a clearly shorter overall survival compared to subtype-dominant tumors. Furthermore, 21 corresponding pairs of primary and recurrent GBM were compared, showing a dominance of the mesenchymal subtype in the recurrent tumors. Our study confirms the prognostic impact of intratumoral heterogeneity in GBM, and more importantly, makes this hallmark assessable by routine diagnostics.
RESUMO
BACKGROUND: Glioblastoma (GBM) is the most malignant primary brain tumor. Relapse occurs regularly, and the clinical behavior seems to be due to a therapy-resistant subpopulation of glioma-initiating cells that belong to the group of cancer stem cells. Aldehyde dehydrogenase (ALDH) has been identified as a marker for this cell population, and we have shown previously that ALDH1A3-positive GBM cells are more resistant against temozolomide (TMZ) treatment. However, it is still unclear how ALDH expression mediates chemoresistance. MATERIALS AND METHODS: ALDH1A3 expression was analyzed in 112 specimens from primary and secondary surgical resections of 56 patients with GBM (WHO grade IV). All patients received combined adjuvant radiochemotherapy. For experimental analysis, CRISPR-Cas9-induced knockout cells from three established GBM cell lines (LN229, U87MG, T98G) and two glioma stem-like cell lines were investigated after TMZ treatment. RESULTS: ALDH1A3 knockout cells were more sensitive to TMZ, and oxidative stress seemed to be the molecular process where ALDH1A3 exerts its role in resistance against TMZ. Oxidative stress led to lipid peroxidation, yielding active aldehydes that were detoxified by ALDH enzymatic activity. During the metabolic process, autophagy was induced leading to downregulation of the enzyme, but ALDH1A3 is upregulated to even higher expression levels after finishing the TMZ therapy in vitro. Recurrent GBMs show significantly higher ALDH1A3 expression than the respective samples from the primary tumor, and patients suffering from GBM with high ALDH1A3 expression showed a shorter median survival time (12â¯months vs 21â¯months, Pâ¯<â¯.05). CONCLUSION: Oxidative stress is an important and clinically relevant component of TMZ-induced therapeutic effects. Cytotoxicity seems to be mediated by aldehydes resulting from lipid peroxidation, and ALDH1A3 is able to reduce the number of toxic aldehydes. Therefore, we present a molecular explanation of the role of ALDH1A3 in therapeutic resistance of human GBM cells.