Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433308

RESUMO

Treelines advance due to climate warming. The impacts of this vegetation shift on plant-soil nutrient cycling are still uncertain, yet highly relevant as nutrient availability stimulates tree growth. Here, we investigated nitrogen (N) and phosphorus (P) in plant and soil pools along two tundra-forest transects on Kola Peninsula, Russia, with a documented elevation shift of birch-dominated treeline by 70 m during the last 50 years. Results show that although total N and P stocks in the soil-plant system did not change with elevation, their distribution was significantly altered. With the transition from high-elevation tundra to low-elevation forest, P stocks in stones decreased, possibly reflecting enhanced weathering. In contrast, N and P stocks in plant biomass approximately tripled and available P and N in the soil increased fivefold toward the forest. This was paralleled by decreasing carbon (C)-to-nutrient ratios in foliage and litter, smaller C:N:P ratios in microbial biomass, and lower enzymatic activities related to N and P acquisition in forest soils. An incubation experiment further demonstrated manifold higher N and P net mineralization rates in litter and soil in forest compared to tundra, likely due to smaller C:N:P ratios in decomposing organic matter. Overall, our results show that forest expansion increases the mobilization of available nutrients through enhanced weathering and positive plant-soil feedback, with nutrient-rich forest litter releasing greater amounts of N and P upon decomposition. While the low N and P availability in tundra may retard treeline advances, its improvement toward the forest likely promotes tree growth and forest development.


Assuntos
Nitrogênio , Árvores , Florestas , Fósforo , Solo
2.
Glob Ecol Biogeogr ; 33(1): 141-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516344

RESUMO

Aim: Forest disturbances are increasing around the globe due to changes in climate and management, deteriorating forests' carbon sink strength. Estimates of global forest carbon budgets account for losses of plant biomass but often neglect the effects of disturbances on soil organic carbon (SOC). Here, we aimed to quantify and conceptualize SOC losses in response to different disturbance agents on a global scale. Location: Global. Time Period: 1983-2022. Major Taxa Studied: Forest soils. Methods: We conducted a comprehensive global analysis of the effects of harvesting, wildfires, windstorms and insect infestations on forest SOC stocks in the surface organic layer and top mineral soil, synthesizing 927 paired observations from 151 existing field studies worldwide. We further used global mapping to assess potential SOC losses upon disturbance. Results: We found that both natural and anthropogenic forest disturbances can cause large SOC losses up to 60 Mg ha-1. On average, the largest SOC losses were found after wildfires, followed by disturbances from windstorms, harvests and insects. However, initial carbon stock size, rather than disturbance agent, had the strongest influence on the magnitude of SOC losses. SOC losses were greatest in cold-climate forests (boreal and mountainous regions) with large accumulations of organic matter on or near the soil surface. Negative effects are present for at least four decades post-disturbance. In contrast, forests with small initial SOC stocks experienced quantitatively lower carbon losses, and their stocks returned to pre-disturbance levels more quickly. Main Conclusions: Our results indicate that the more carbon is stored in the forest's organic layers and top mineral soils, the more carbon will be lost after disturbance. Robust estimates of forest carbon budgets must therefore consider disturbance-induced SOC losses, which strongly depend on site-specific stocks. Particularly in cold-climate forests, these disturbance-related losses may challenge forest management efforts to sequester CO2.

3.
New Phytol ; 239(1): 325-339, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084070

RESUMO

Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.


Assuntos
Micorrizas , Solo , Florestas , Árvores/microbiologia , Carbono , Microbiologia do Solo , Fungos , Nitrogênio
4.
New Phytol ; 231(2): 777-790, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34013982

RESUMO

Fungi are known to exert a significant influence over soil organic matter (SOM) turnover, however understanding of the effects of fungal community structure on SOM dynamics and its consequences for ecosystem fertility is fragmentary. Here we studied soil fungal guilds and SOM decomposition processes along a fertility gradient in a temperate mountain beech forest. High-throughput sequencing was used to investigate fungal communities. Carbon and nitrogen stocks, enzymatic activity and microbial respiration were measured. While ectomycorrhizal fungal abundance was not related to fertility, saprotrophic ascomycetes showed higher relative abundances under more fertile conditions. The activity of oxidising enzymes and respiration rates in mineral soil were related positively to fertility and saprotrophic fungi. In addition, organic layer carbon and nitrogen stocks were lower on the more fertile plots, although tree biomass and litter input were higher. Together, the results indicated a faster SOM turnover at the fertile end of the gradient. We suggest that there is a positive feedback mechanism between SOM turnover and fertility that is mediated by soil fungi to a significant extent. By underlining the importance of fungi for soil fertility and plant growth, these findings furthermore emphasise the dependency of carbon cycling on fungal communities below ground.


Assuntos
Micobioma , Solo , Carbono , Ecossistema , Florestas , Fungos , Microbiologia do Solo
5.
Microb Ecol ; 82(1): 243-256, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33755773

RESUMO

Forests on steep slopes constitute a significant proportion of European mountain areas and are important as production and protection forests. This study describes the soil fungal community structure in a European beech-dominated mountain forest stands in the Northern Calcareous Alps and investigates how it is determined by season and soil properties. Samples were collected at high spatial resolution in an area of ca. 100 m × 700 m in May (spring) and August (summer). Illumina MiSeq high-throughput sequencing of the ITS2-region revealed distinct patterns for the soil fungal communities. In contrast to other studies from temperate European beech forest stands, Ascomycota dominated the highly diverse fungal community, while ectomycorrhizal fungi were of lower abundance. Russulaceae, which are often among the dominant ectomycorrhizal fungi associated with European beech, were absent from all samples. Potentially plant pathogenic fungi were more prevalent than previously reported. Only subtle seasonal differences were found between fungal communities in spring and summer. Especially, dominant saprotrophic taxa were largely unaffected by season, while slightly stronger effects were observed for ectomycorrhizal fungi. Soil characteristics like pH and organic carbon content, on the other hand, strongly shaped abundant taxa among the saprotrophic fungal community.


Assuntos
Fagus , Micorrizas , Florestas , Fungos/genética , Micorrizas/genética , Estações do Ano , Solo , Microbiologia do Solo
6.
Sci Total Environ ; 857(Pt 3): 159694, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302424

RESUMO

Storms represent a major disturbance factor in forest ecosystems, but the effects of windthrows on soil organic carbon (SOC) stocks are poorly quantified. Here, we assessed the SOC stocks of windthrown forests at 19 sites across Switzerland spanning an elevation gradient from 420 to 1550 m, encompassing a strong climatic gradient. Results show that the effect size of disturbance on SOC stocks increases with the size of the initial SOC stocks. The largest windthrow-induced SOC losses of up to 29 t C ha-1 occurred in high-elevation forests with a harsh climate developing thick organic layers. In contrast, SOC stocks of low-elevation forests with thin organic layers were hardly affected. A mineralization study further revealed high elevation forests to store higher amounts of easily mineralizable C in thick organic layers that got lost following windthrow. These findings are supported by a meta-analysis of available windthrow studies, showing an increase of storm-induced SOC losses with the size of the initial SOC stocks. Modelling simulations further indicate longer-lasting SOC losses and a slower recovery of SOC stocks after windthrow at high compared to low elevations, due to a slower regeneration of mountain forests and associated lower C inputs into soils in a harsh climate. Upscaling the experimental findings/observed patterns by linking them to a data base of Swiss forest soils shows a total SOC loss of ∼0.4 Mt. C for the whole forested area of Switzerland after two major storm events, counteracting the forest net carbon sink of decades. Our study provides strong evidence that the vulnerability of SOC stocks to windthrow is particularly high in forests featuring thick and slowly forming organic layers, such as mountain soils. Thus, the risk of losing SOC to more frequent windthrows in mountain forests strongly limits their potential to mitigate climate change.


Assuntos
Carbono , Solo , Ecossistema , Florestas , Sequestro de Carbono
7.
PeerJ ; 8: e9750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974092

RESUMO

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

8.
Structure ; 14(5): 857-67, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16698547

RESUMO

The yfhJ gene is part of the isc operon, which encodes the machinery devoted to assemble iron-sulfur clusters in prokaryotes. Its transcript is a small acidic protein that binds the desulfurase IscS, which is essential in iron-specific metabolic pathways. To understand its cellular role, we have characterized the structure of YfhJ in solution and its interactions with potential cellular partners. It contains a modified winged helix motif, usually present in DNA binding proteins, and is able to bind iron cations. The IscS interaction surface is the same as that involved in iron binding. This observation and the pattern of conservation through species strongly suggest that YfhJ is a molecular adaptor that is able to modulate the function of IscS in iron-sulfur cluster formation. The remarkable similarity between the in vitro behavior of YfhJ and that of the protein frataxin also suggests new hypotheses regarding the functional role of both proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Sequência de Aminoácidos , Ferro/química , Proteínas de Ligação ao Ferro/química , Dados de Sequência Molecular , Conformação Proteica , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA