Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0268577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763595

RESUMO

The relationship between conscious experience and brain activity has intrigued scientists and philosophers for centuries. In the last decades, several theories have suggested different accounts for these relationships. These theories have developed in parallel, with little to no cross-talk among them. To advance research on consciousness, we established an adversarial collaboration between proponents of two of the major theories in the field, Global Neuronal Workspace and Integrated Information Theory. Together, we devised and preregistered two experiments that test contrasting predictions of these theories concerning the location and timing of correlates of visual consciousness, which have been endorsed by the theories' proponents. Predicted outcomes should either support, refute, or challenge these theories. Six theory-impartial laboratories will follow the study protocol specified here, using three complementary methods: Functional Magnetic Resonance Imaging (fMRI), Magneto-Electroencephalography (M-EEG), and intracranial electroencephalography (iEEG). The study protocol will include built-in replications, both between labs and within datasets. Through this ambitious undertaking, we hope to provide decisive evidence in favor or against the two theories and clarify the footprints of conscious visual perception in the human brain, while also providing an innovative model of large-scale, collaborative, and open science practice.


Assuntos
Estado de Consciência , Teoria da Informação , Humanos , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Percepção Visual , Eletroencefalografia
2.
Curr Biol ; 28(15): 2400-2412.e6, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30057309

RESUMO

Deciphering how brains generate behavior depends critically on an accurate description of behavior. If distinct behaviors are lumped together, separate modes of brain activity can be wrongly attributed to the same behavior. Alternatively, if a single behavior is split into two, the same neural activity can appear to produce different behaviors. Here, we address this issue in the context of acoustic communication in Drosophila. During courtship, males vibrate their wings to generate time-varying songs, and females evaluate songs to inform mating decisions. For 50 years, Drosophila melanogaster song was thought to consist of only two modes, sine and pulse, but using unsupervised classification methods on large datasets of song recordings, we now establish the existence of at least three song modes: two distinct pulse types, along with a single sine mode. We show how this seemingly subtle distinction affects our interpretation of the mechanisms underlying song production and perception. Specifically, we show that visual feedback influences the probability of producing each song mode and that male song mode choice affects female responses and contributes to modulating his song amplitude with distance. At the neural level, we demonstrate how the activity of four separate neuron types within the fly's song pathway differentially affects the probability of producing each song mode. Our results highlight the importance of carefully segmenting behavior to map the underlying sensory, neural, and genetic mechanisms.


Assuntos
Comunicação Animal , Drosophila melanogaster/fisiologia , Neurônios Motores/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Corte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA