Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38995025

RESUMO

BACKGROUND AND OBJECTIVES: Neuronavigation is a fundamental tool in the resection of intracranial tumors. However, it is limited by its calibration to preoperative neuroimaging, which loses accuracy intraoperatively after brain shift. Therefore, surgeons rely on anatomic landmarks or tools like intraoperative MRI to assess the extent of tumor resection (EOR) and update neuronavigation. Recent studies demonstrate that intraoperative ultrasound (iUS) provides point-of-care imaging without the cost or resource utilization of an intraoperative MRI, and advances in neuronavigation-guided iUS provide an opportunity for real-time imaging overlaid with neuronavigation to account for brain shift. We assessed the feasibility, efficacy, and benefits of navigated iUS to assess the EOR and restore stereotactic accuracy in neuronavigation after brain shift. METHODS: This prospective single-center study included patients presenting with intracranial tumors (gliomas, metastasis) to an academic medical center. Navigated iUS images were acquired preresection, midresection, and postresection. The EOR was determined by the surgeon intraoperatively and compared with the postoperative MRI report by an independent neuroradiologist. Outcome measures included time to perform the iUS sweep, time to process ultrasound images, and EOR predicted by the surgeon intraoperatively compared with the postoperative MRI. RESULTS: This study included 40 patients consisting of gliomas (n = 18 high-grade gliomas, n = 4 low-grade gliomas, n = 4 recurrent) and metastasis (n = 18). Navigated ultrasound sweeps were performed in all patients (n = 83) with a median time to perform of 5.5 seconds and a median image processing time of 29.9 seconds. There was 95% concordance between the surgeon's and neuroradiologist's determination of EOR using navigated iUS and postoperative MRI, respectively. The sensitivity was 100%, and the specificity was 94%. CONCLUSION: Navigated iUS was successfully used for EOR determination in glioma and metastasis resection. Incorporating navigated iUS into the surgical workflow is safe and efficient and provides a real-time assessment of EOR while accounting for brain shift in intracranial tumor surgeries.

2.
Acad Radiol ; 31(2): 417-425, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38401987

RESUMO

RATIONALE AND OBJECTIVES: Innovation is a crucial skill for physicians and researchers, yet traditional medical education does not provide instruction or experience to cultivate an innovative mindset. This study evaluates the effectiveness of a novel course implemented in an academic radiology department training program over a 5-year period designed to educate future radiologists on the fundamentals of medical innovation. MATERIALS AND METHODS: A pre- and post-course survey and examination were administered to residents who participated in the innovation course (MESH Core) from 2018 to 2022. Respondents were first evaluated on their subjective comfort level, understanding, and beliefs on innovation-related topics using a 5-point Likert-scale survey. Respondents were also administered a 21-question multiple-choice exam to test their objective knowledge of innovation-related topics. RESULTS: Thirty-eight residents participated in the survey (response rate 95%). Resident understanding, comfort and belief regarding innovation-related topics improved significantly (P < .0001) on all nine Likert-scale questions after the course. After the course, a significant majority of residents either agreed or strongly agreed that technological innovation should be a core competency for the residency curriculum, and that a workshop to prototype their ideas would be beneficial. Performance on the course exam showed significant improvement (48% vs 86%, P < .0001). The overall course experience was rated 5 out of 5 by all participants. CONCLUSION: MESH Core demonstrates long-term success in educating future radiologists on the basic concepts of medical technological innovation. Years later, residents used the knowledge and experience gained from MESH Core to successfully pursue their own inventions and innovative projects. This innovation model may serve as an approach for other institutions to implement training in this domain.


Assuntos
Educação de Pós-Graduação em Medicina , Internato e Residência , Humanos , Educação de Pós-Graduação em Medicina/métodos , Competência Clínica , Currículo , Radiologistas , Hospitais
3.
Artigo em Inglês | MEDLINE | ID: mdl-38702066

RESUMO

BACKGROUND AND PURPOSE: Imaging stewardship in the emergency department (ED) is vital in ensuring patients receive optimized care. While suspected cord compression (CC) is a frequent indication for total spine MR imaging in the ED, the incidence of CC is low. Recently, our level 1 trauma center introduced a survey spine MR imaging protocol to evaluate for suspected CC while reducing examination time to avoid imaging overutilization. This study aims to evaluate the time savings, frequency of ordering patterns of the survey, and the symptoms and outcomes of patients undergoing the survey. MATERIALS AND METHODS: This retrospective study examined patients who received a survey spine MR imaging in the ED at our institution between 2018 and 2022. All examinations were performed on a 1.5T GE Healthcare scanner by using our institutional CC survey protocol, which includes sagittal T2WI and STIR sequences through the cervical, thoracic, and lumbar spine. Examinations were read by a blinded, board-certified neuroradiologist. RESULTS: A total of 2002 patients received a survey spine MR imaging protocol during the study period. Of these patients, 845 (42.2%, mean age 57 ± 19 years, 45% women) received survey spine MR imaging examinations for the suspicion of CC, and 120 patients (14.2% positivity rate) had radiographic CC. The survey spine MR imaging averaged 5 minutes and 50 seconds (79% faster than routine MR imaging). On multivariate analysis, trauma, back pain, lower extremity weakness, urinary or bowel incontinence, numbness, ataxia, and hyperreflexia were each independently associated with CC. Of the 120 patients with CC, 71 underwent emergent surgery, 20 underwent nonemergent surgery, and 29 were managed medically. CONCLUSIONS: The survey spine protocol was positive for CC in 14% of patients in our cohort and acquired at a 79% faster rate compared with routine total spine. Understanding the positivity rate of CC, the clinical symptoms that are most associated with CC, and the subsequent care management for patients presenting with suspected cord compression who received the survey spine MR imaging may better inform the broad adoption and subsequent utilization of survey imaging protocols in emergency settings to increase throughput, improve allocation of resources, and provide efficient care for patients with suspected CC.

4.
Neurosurgery ; 95(2): 480-486, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008546

RESUMO

BACKGROUND AND OBJECTIVES: Health care providers' exposure to global surgical disparities is limited in current nursing and/or medical school curricula. For instance, global health is often associated with infectious diseases or maternal health without acknowledging the growing need for surgical care in low- and middle-income countries (LMICs). We propose an international virtual hackathon based on neurosurgical patient cases in under-resourced settings as an educational tool to bring awareness to global surgical disparities and develop relationships among trainees in different countries. METHODS: Participants were recruited through email listservs, a social media campaign, and prize offerings. A 3-day virtual hackathon event was administered, which included workshops, mentorship, keynote panels, and pitch presentations to judges. Participants were presented with real patient cases and directed to solve a barrier to their care. Surveys assessed participants' backgrounds and event experience. The hackathon was executed through Zoom at Harvard Innovation Lab in Boston, MA, on March 25 to 27, 2022. Participants included medical students, with additional participants from business, engineering, or current health care workers. RESULTS: Three hundred seven applications were submitted for 100 spots. Participants included medical students, physicians, nurses, engineers, entrepreneurs, and undergraduates representing 25 countries and 82 cities. Fifty-one participants previously met a neurosurgeon, while 39 previously met a global health expert, with no difference between LMIC and high-income countries' respondents. Teams spent an average of 2.75 hours working with mentors, and 88% of postevent respondents said the event was "very" or "extremely conducive" to networking. Projects fell into 4 categories: access, language barriers, education and training, and resources. The winning team, which was interdisciplinary and international, developed an application that analyzes patient anatomy while performing physical therapy to facilitate remote care and clinical decision-making. CONCLUSION: An international virtual hackathon can be an educational tool to increase innovative ideas to address surgical disparities in LMICs and establish early collaborative relationships with medical trainees from different countries.


Assuntos
Saúde Global , Neurocirurgia , Humanos , Neurocirurgia/educação , Países em Desenvolvimento , Procedimentos Neurocirúrgicos/educação , Neurocirurgiões/educação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA