Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918071

RESUMO

Nowadays the use of remote monitoring sensors is a standard practice in landslide characterization and monitoring. In the last decades, technologies such as LiDAR, terrestrial and satellite SAR interferometry (InSAR) and photogrammetry demonstrated a great potential for rock slope assessment while limited studies and applications are still available for ArcSAR Interferometry, Gigapixel imaging and Acoustic sensing. Taking advantage of the facilities located at the Poggio Baldi Landslide Natural Laboratory, an intensive monitoring campaign was carried out on May 2019 using simultaneously the HYDRA-G ArcSAR for radar monitoring, the Gigapan robotic system equipped with a DSLR camera for photo-monitoring purposes and the DUO Smart Noise Monitor for acoustic measurements. The aim of this study was to evaluate the potential of each monitoring sensor and to investigate the ongoing gravitational processes at the Poggio Baldi landslide. Analysis of multi-temporal Gigapixel-images revealed the occurrence of 84 failures of various sizes between 14-17 May 2019. This allowed us to understand the short-term evolution of the rock cliff that is characterized by several impulsive rockfall events and continuous debris production. Radar displacement maps revealed a constant movement of the debris talus at the toe of the main rock scarp, while acoustic records proved the capability of this technique to identify rockfall events as well as their spectral content in a narrow range of frequencies between 200 Hz to 1000 Hz. This work demonstrates the great potential of the combined use of a variety of remote sensors to achieve high spatial and temporal resolution data in the field of landslide characterization and monitoring.

2.
Sensors (Basel) ; 18(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996550

RESUMO

The Mediterranean region is affected by considerable daily and seasonal temperature variations due to intense solar radiation. In mid-seasons, thermal excursions can exceed tens of degrees thus influencing the long-term behaviour of jointed rock masses acting as a preparatory factor for rock slope instabilities. In order to evaluate the thermal response of a densely jointed rock-block, monitoring has been in operation since 2016 by direct and remote sensing techniques in an abandoned quarry in Acuto (central Italy). Monthly InfraRed Thermographic (IRT) surveys were carried out on its exposed faces and along sections of interest across monitored main joints. The results highlight the daily and seasonal cyclical behaviour, constraining amplitudes and rates of heating and cooling phases. The temperature time-series revealed the effect of sun radiation and exposure on thermal response of the rock-block, which mainly depends on the seasonal conditions. The influence of opened joints in the heat propagation is revealed by the differential heating experienced across it, which was verified under 1D and 2D analysis. IRT has proved to be a valid monitoring technique in supporting traditional approaches, for the definition of the surficial temperature distribution on rock masses or stone building materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA