Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Eur Acad Dermatol Venereol ; 38(7): 1419-1431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450801

RESUMO

BACKGROUND: The limited therapies available for treating Merkel cell carcinoma (MCC), a highly aggressive skin neoplasm, still pose clinical challenges, and novel treatments are required. Targeting retinoid signalling with retinoids, such as all-trans retinoic acid (ATRA), is a promising and clinically useful antitumor approach. ATRA drives tumour cell differentiation by modulating retinoid signalling, leading to anti-proliferative and pro-apoptotic effects. Although retinoid signalling is dysregulated in MCC, ATRA activity in this tumour is unknown. This study aimed to evaluate the impact of ATRA on the pathological phenotype of MCC cells. METHODS: The effect of ATRA was tested in various Merkel cell polyomavirus-positive and polyomavirus-negative MCC cell lines in terms of cell proliferation, viability, migration and clonogenic abilities. In addition, cell cycle, apoptosis/cell death and the retinoid gene signature were evaluated upon ATRA treatments. RESULTS: ATRA efficiently impaired MCC cell proliferation and viability in MCC cells. A strong effect in reducing cell migration and clonogenicity was determined in ATRA-treated cells. Moreover, ATRA resulted as strongly effective in arresting cell cycle and inducing apoptosis/cell death in all tested MCC cells. Enrichment analyses indicated that ATRA was effective in modulating the retinoid gene signature in MCC cells to promote cell differentiation pathways, which led to anti-proliferative and pro-apoptotic/cell death effects. CONCLUSIONS: These results underline the potential of retinoid-based therapy for MCC management and might open the way to novel experimental approaches with other retinoids and/or combinatorial treatments.


Assuntos
Apoptose , Carcinoma de Célula de Merkel , Diferenciação Celular , Proliferação de Células , Neoplasias Cutâneas , Tretinoína , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Humanos , Proliferação de Células/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Retinoides/farmacologia , Retinoides/uso terapêutico , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos
2.
Immunology ; 168(4): 671-683, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36321356

RESUMO

Oncogenic Merkel cell polyomavirus (MCPyV) provokes a widespread and asymptomatic infection in humans. Herein, sera from healthy children and young adults (HC, n = 344) aged 0-20 years old were evaluated for anti-MCPyV immunoglobulin G (IgG) and IgM antibodies employing a recently developed immunoassay. Serum MCPyV IgG data from healthy subjects (HS, n = 510) and elderlies (ES, n = 226), aged 21-65/66-100 years old, from our previous studies, were included. The anti-MCPyV IgG and IgM rates in HC sera were 40.7% and 29.7%, respectively. A lower prevalence of anti-MCPyV IgGs was found in HC aged 0-5 years old (13%) compared to 6-10 (52.3%), 11-15 (60.5%) and 16-20 years old (61.6%) cohorts. Age-stratified HCs exhibited similar anti-MCPyV IgM rates (27.9%-32.9%). Serological profiles indicated that anti-MCPyV IgGs and IgMs had low optical densities (ODs) during the first years of life, while IgM ODs appeared to decrease throughout young adulthood. A lower anti-MCPyV IgGs rate was found in HC (40.7%) than HS (61.8%) and ES (63.7%). Upon the 5-years range age-stratification, a lower anti-MCPyV IgGs rate was found in the younger HC cohort aged 0-5 years old compared to the remaining older HC/HS/ES cohorts (52.3%-72%). The younger HC cohort exhibited the lowest anti-MCPyV IgG ODs than the older cohorts. Low anti-MCPyV IgMs rates and ODs were found in the 21-25 (17.5%) and 26-30 (7.7%) years old cohorts. Our data indicate that, upon an early-in-life seroconversion, the seropositivity for oncogenic MCPyV peaks in late childhood/young adulthood and remains at high prevalence and relatively stable throughout life.


Assuntos
Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Humanos , Criança , Adulto Jovem , Adulto , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Pessoa de Meia-Idade , Idoso , Infecções por Polyomavirus/epidemiologia , Soroconversão , Soro , Imunoglobulina G
3.
J Med Virol ; 95(7): e28949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436928

RESUMO

Limited molecular knowledge of Merkel cell polyomavirus (MCPyV)-positive and -negative Merkel cell carcinoma (MCC) subsets (MCCP/MCCN) has prevented so far the identification of the MCC origin cell type and, therefore, the development of effective therapies. The retinoic gene signature was investigated in various MCCP, MCCN, and control fibroblast/epithelial cell lines to elucidate the heterogeneous nature of MCC. Hierarchical clustering and principal component analysis indicated that MCCP and MCCN cells were clusterizable from each other and control cells, according to their retinoic gene signature. MCCP versus MCCN differentially expressed genes (n = 43) were identified. Protein-protein interaction network indicated SOX2, ISL1, PAX6, FGF8, ASCL1, OLIG2, SHH, and GLI1 as upregulated hub genes and JAG1 and MYC as downregulated hub genes in MCCP compared to MCCN. Numerous MCCP-associated hub genes were DNA-binding/-transcription factors involved in neurological and Merkel cell development and stemness. Enrichment analyses indicated that MCCP versus MCCN differentially expressed genes predominantly encode for to DNA-binding/-transcription factors involved in development, stemness, invasiveness, and cancer. Our findings suggest the neuroendocrine origin of MCCP, by which neuronal precursor cells could undergo an MCPyV-driven transformation. These overarching results might open the way to novel retinoid-based MCC therapies.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/genética , Poliomavírus das Células de Merkel/genética , Fatores de Transcrição/genética , DNA
4.
J Med Virol ; 95(1): e28375, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477874

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin malignancy with two distinct etiologies. The first, which accounts for the highest proportion, is caused by Merkel cell polyomavirus (MCPyV), a DNA tumor virus. A second, UV-induced, MCC form has also been identified. Few MCC diagnostic, prognostic, and therapeutic options are available. MicroRNAs (miRNAs) are small noncoding RNA molecules, which play a key role in regulating various physiologic cellular functions including cell cycling, proliferation, differentiation, and apoptosis. Numerous miRNAs are dysregulated in cancer, by acting as either tumor suppressors or oncomiRs. The aim of this review is to collect, summarize, and discuss recent findings on miRNAs whose dysregulation has been assumed to play a role in MCC. The potential clinical application of miRNAs as diagnostic and prognostic biomarkers in MCC is also described. In the future, miRNAs will potentially gain clinical significance for the improvement of MCC diagnostic, prognostic, and therapeutic options.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , MicroRNAs , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Carcinoma de Célula de Merkel/diagnóstico , Carcinoma de Célula de Merkel/genética , MicroRNAs/genética , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/diagnóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Poliomavírus das Células de Merkel/genética
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163424

RESUMO

Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor ß (TGF-ß)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/ß-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.


Assuntos
Doenças Ósseas Metabólicas/genética , Epigênese Genética , Predisposição Genética para Doença/genética , Animais , Remodelação Óssea , Metilação de DNA , Código das Histonas , Humanos , Osteogênese , RNA não Traduzido/genética , Via de Sinalização Wnt
6.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768895

RESUMO

Merkel cell polyomavirus (MCPyV) is a small DNA virus with oncogenic potential. MCPyV is the causative agent of Merkel Cell Carcinoma (MCC), a rare but aggressive tumor of the skin. The role of epigenetic mechanisms, such as histone posttranslational modifications (HPTMs), DNA methylation, and microRNA (miRNA) regulation on MCPyV-driven MCC has recently been highlighted. In this review, we aim to describe and discuss the latest insights into HPTMs, DNA methylation, and miRNA regulation, as well as their regulative factors in the context of MCPyV-driven MCC, to provide an overview of current findings on how MCPyV is involved in the dysregulation of these epigenetic processes. The current state of the art is also described as far as potentially using epigenetic dysregulations and related factors as diagnostic and prognostic tools is concerned, in addition to targets for MCPyV-driven MCC therapy. Growing evidence suggests that the dysregulation of HPTMs, DNA methylation, and miRNA pathways plays a role in MCPyV-driven MCC etiopathogenesis, which, therefore, may potentially be clinically significant for this deadly tumor. A deeper understanding of these mechanisms and related factors may improve diagnosis, prognosis, and therapy for MCPyV-driven MCC.


Assuntos
Carcinoma de Célula de Merkel , Epigenômica , Poliomavírus das Células de Merkel , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Metilação de DNA , Histonas , Humanos , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/patogenicidade , MicroRNAs/metabolismo , Infecções por Polyomavirus , Prognóstico , Processamento de Proteína Pós-Traducional , Pele/patologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia
7.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209351

RESUMO

In this study, the in vitro biocompatibility and osteoinductive ability of a recently developed biomorphic hydroxylapatite ceramic scaffold (B-HA) derived from transformation of wood structures were analyzed using human adipose stem cells (hASCs). Cell viability and metabolic activity were evaluated in hASCs, parental cells and in recombinant genetically engineered hASC-eGFP cells expressing the green fluorescence protein. B-HA osteoinductivity properties, such as differentially expressed genes (DEG) involved in the skeletal development pathway, osteocalcin (OCN) protein expression and mineral matrix deposition in hASCs, were evaluated. In vitro induction of osteoblastic genes, such as Alkaline phosphatase (ALPL), Bone gamma-carboxyglutamate (gla) protein (BGLAP), SMAD family member 3 (SMAD3), Sp7 transcription factor (SP7) and Transforming growth factor, beta 3 (TGFB3) and Tumor necrosis factor (ligand) superfamily, member 11 (TNFSF11)/Receptor activator of NF-κB (RANK) ligand (RANKL), involved in osteoclast differentiation, was undertaken in cells grown on B-HA. Chondrogenic transcription factor SRY (sex determining region Y)-box 9 (SOX9), tested up-regulated in hASCs grown on the B-HA scaffold. Gene expression enhancement in the skeletal development pathway was detected in hASCs using B-HA compared to sintered hydroxylapatite (S-HA). OCN protein expression and calcium deposition were increased in hASCs grown on B-HA in comparison with the control. This study demonstrates the biocompatibility of the novel biomorphic B-HA scaffold and its potential use in osteogenic differentiation for hASCs. Our data highlight the relevance of B-HA for bone regeneration purposes.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Durapatita/química , Osteogênese , Células-Tronco/metabolismo , Alicerces Teciduais/química , Técnicas de Cultura de Células , Células Cultivadas , Humanos
8.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673409

RESUMO

Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-ß)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/ß-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese , Transdução de Sinais , Animais , Osso e Ossos , Humanos , Células-Tronco Mesenquimais/fisiologia
9.
Theranostics ; 14(1): 143-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164139

RESUMO

Human osteogenic differentiation is a complex and well-orchestrated process which involves a plethora of molecular players and cellular processes. A growing number of studies have underlined that circular RNAs (circRNAs) play an important regulatory role during human osteogenic differentiation. CircRNAs are single-stranded, covalently closed non-coding RNA molecules that are acquiring increased attention as epigenetic regulators of gene expression. Given their intrinsic high conformational stability, abundance, and specificity, circRNAs can undertake various biological activities in order to regulate multiple cellular processes, including osteogenic differentiation. The most recent evidence indicates that circRNAs control human osteogenesis by preventing the inhibitory activity of miRNAs on their downstream target genes, using a competitive endogenous RNA mechanism. The aim of this review is to draw attention to the currently known regulatory mechanisms of circRNAs during human osteogenic differentiation. Specifically, we provide an understanding of recent advances in research conducted on various human mesenchymal stem cell types that underlined the importance of circRNAs in regulating osteogenesis. A comprehensive understanding of the underlying regulatory mechanisms of circRNA in osteogenesis will improve knowledge on the molecular processes of bone growth, resulting in the potential development of novel preclinical and clinical studies and the discovery of novel diagnostic and therapeutic tools for bone disorders.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Osteogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo
10.
Cells ; 12(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36611977

RESUMO

Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.


Assuntos
Microbiota , Probióticos , Humanos , Intestinos/microbiologia , Probióticos/farmacologia , Bactérias , Tolerância Imunológica
11.
Stem Cell Res Ther ; 14(1): 139, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226267

RESUMO

BACKGROUND: Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY: An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION: In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.


Assuntos
Transfusão de Sangue , Células Eritroides , Linhagem Celular , Expectativa de Vida , Humanos , Doadores de Sangue
12.
Sci Rep ; 13(1): 6501, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081052

RESUMO

The epigenetic role of microRNAs is established at both physiological and pathological levels. Dysregulated miRNAs and their targets appear to be a promising approach for innovative anticancer therapies. In our previous study, circulating miR-197-3p tested dysregulated in workers ex-exposed to asbestos (WEA). Herein, an epigenetic investigation on this circulating miRNA was carried out in sera from malignant pleural mesothelioma (MPM) patients. MiR-197-3p was quantified in MPM (n = 75) sera and comparatively analyzed to WEA (n = 75) and healthy subject (n = 75) sera, using ddPCR and RT-qPCR techniques. Clinicopathological characteristics, occupational, non-occupational information and overall survival (OS) were evaluated in correlation studies. MiR-197-3p levels, analyzed by ddPCR, were significantly higher in MPM than in WEA cohort, with a mean copies/µl of 981.7 and 525.01, respectively. Consistently, RT-qPCR showed higher miR-197-3p levels in sera from MPM with a mean copies/µl of 603.7, compared to WEA with 336.1 copies/µl. OS data were significantly associated with histologic subtype and pleurectomy. Circulating miR-197-3p is proposed as a new potential biomarker for an early diagnosis of the MPM onset. Indeed, miR-197-3p epigenetic investigations along with chest X-ray, computed tomography scan and spirometry could provide relevant information useful to reach an early and effective diagnosis for MPM.


Assuntos
Amianto , MicroRNA Circulante , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , MicroRNAs , Neoplasias Pleurais , Humanos , Mesotelioma Maligno/genética , Mesotelioma/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pleurais/patologia , Amianto/efeitos adversos , MicroRNAs/genética , Epigênese Genética
13.
Front Immunol ; 14: 1293313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299147

RESUMO

Introduction: Human polyomaviruses (HPyVs) cause persistent/latent infections in a large fraction of the population. HPyV infections may cause severe diseases in immunocompromised patients. Malawi polyomavirus (MWPyV) is the 10th discovered human polyomavirus (HPyV 10). MWPyV was found in stool samples of healthy children. So far, the few investigations carried out on HPyV 10 did not find an association with human disease. Methods: In this study, to verify the putative association between MWPyV and human diseases, MWPyV seroprevalence was investigated in patients affected by i) lymphoproliferative disorders (LPDs) and ii) immune system disorders, i.e., autoimmune diseases (ADs), and in iii) healthy subjects. An indirect ELISA, employing virus-like particles (VLPs) to detect serum IgG antibodies against MWPyV/HPyV 10, was carried out. The study also revealed the prevalence of another polyomavirus, Merkel cell polyomavirus (MCPyV). Results: Sera from patients with distinct autoimmune diseases (n = 44; mean age 20 years) had a prevalence of MWPyV antibodies of 68%, while in patients with lymphoproliferative disorders (n = 15; mean age 14 years), subjected to bone marrow transplantation, the prevalence was 47%. In healthy subjects (n = 66; mean age 13 years), the prevalence of MWPyV antibodies was 67%. Our immunological investigation indicates that MWPyV/HPyV 10 seroconversion occurs early in life and MWPyV/HPyV 10 appears to be another polyomavirus ubiquitous in the human population. A significantly lower MWPyV antibody reactivity together with a lower immunological profile was detected in the sera of LPD patients compared with HS2 (*p < 0.05) (Fisher's exact test). LPD and AD patients have a similar MCPyV seroprevalence compared with healthy subjects. Discussion: MWPyV seroprevalence indicates that this HPyV is not associated with lymphoproliferative and autoimmune diseases. However, the ability to produce high levels of antibodies against MWPyV appears to be impaired in patients with lymphoproliferative disorders. Immunological investigations indicate that MWPyV seroconversion occurs early in life. MCPyV appears to be a ubiquitous polyomavirus, like other HPyVs, in the human population.


Assuntos
Doenças Autoimunes , Transtornos Linfoproliferativos , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Polyomavirus , Criança , Humanos , Adulto Jovem , Adulto , Adolescente , Imunoglobulina G , Prevalência , Transplante de Medula Óssea , Estudos Soroepidemiológicos , Malaui/epidemiologia , Transtornos Linfoproliferativos/epidemiologia , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/complicações
14.
Sci Rep ; 13(1): 22872, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38129477

RESUMO

Intercellular adhesion is a key function for epithelial cells. The fundamental mechanisms relying on epithelial cell adhesion have been partially uncovered. Hsa-microRNA-1249-3p (hsa-miR-1249-3p) plays a role in the epithelial mesenchymal transition in carcinoma cells, but its physiological function in epithelial cells is unknown. We aimed to investigate the role and molecular mechanisms of hsa-miR-1249-3p on epithelial cell functions. Hsa-miR-1249-3p was overexpressed in human epithelial cells and uterine cervical tissues, compared to cervical carcinoma cells and precancerous tissues, respectively. Hsa-miR-1249-3p was analyzed to verify its regulatory function on Homeobox A13 (HOXA13) target gene and its downstream cell adhesion gene ß-catenin. Functional experiments indicated that hsa-miR-1249-3p inhibition prompted the mRNA and protein overexpression of HOXA13 which, in turn, led to the ß-catenin protein expression. Moreover, hsa-miR-1249-3p inhibition induced a strong colony forming ability in epithelial cells, suggesting the miR involvement in cell adhesion machinery. These data indicate that hsa-miR-1249-3p regulates the expression of HOXA13 and its downstream cell adhesion gene ß-catenin, possible resulting in cell adhesion modification in epithelial cells. This study will allow the set-up of further investigations aimed at exploring the relationship between the hsa-miR-1249-3p/HOXA13 axis and downstream cell adhesion genes.


Assuntos
Carcinoma , MicroRNAs , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , MicroRNAs/genética , MicroRNAs/metabolismo
15.
Front Oncol ; 12: 832047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350569

RESUMO

Merkel Cell Carcinoma (MCC) is a rare but highly aggressive form of non-melanoma skin cancer whose 5-year survival rate is 63%. Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, is the etiological agent of MCC. Although representing a small proportion of MCC cases, MCPyV-negative MCCs have also been identified. The role of epigenetic mechanisms, including histone post-translational modifications (PTMs) in MCC, have been only partially determined. This review aims to describe the most recent progress on PTMs and their regulative factors in the context of MCC onset/development, providing an overview of current findings on both MCC subtypes. An outline of current knowledge on the potential employment of PTMs and related factors as diagnostic and prognostic markers, as well as novel treatment strategies targeting the reversibility of PTMs for MCC therapy is provided. Recent research shows that PTMs are emerging as important epigenetic players involved in MCC onset/development, and therefore may show a potential clinical significance. Deeper and integrated knowledge of currently known PTM dysregulations is of paramount importance in order to understand the molecular basis of MCC and improve the diagnosis, prognosis, and therapeutic options for this deadly tumor.

16.
Oncogene ; 41(3): 301-308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750517

RESUMO

A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.


Assuntos
Biologia Molecular/métodos , Neoplasias/genética , Receptor A3 de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
17.
J Oncol ; 2022: 7249912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874636

RESUMO

Malignant pleural mesothelioma (MPM), a fatal tumor, is mainly linked to the asbestos exposure. It has been reported that together with the inhalation of asbestos fibers, other factors are involved in the MPM onset, including simian virus 40 (SV40). SV40, a polyomavirus with oncogenic potential, induces (i) in vitro the mesenchymal cell transformation, whereas (ii) in vivo the MPM onset in experimental animals. The association between MPM and SV40 in humans remains to be elucidated. Sera (n = 415) from MPM-affected patients (MPM cohort 1; n = 152) and healthy subjects (HSs, n = 263) were investigated for their immunoglobulin G (IgG) against simian virus 40 large tumor antigen (Tag), which is the transforming protein. Sera were investigated with an indirect enzyme-linked immunosorbent assay (ELISA) using two synthetic peptides from SV40 Tag protein. SV40 Tag protein was evaluated by immunohistochemical (IHC) staining on MPM samples (MPM cohort 2; n = 20). Formalin-fixed and paraffin-embedded (FFPE) samples were obtained from MPM patients unrelated to MPM serum donors. The proportion of sera, from MPM patients, showing antibodies against SV40 Tag (34%) was significantly higher compared to HSs (20%) (odds ratio 2.049, CI 95% 1.32-3.224; p=0.0026). Immunohistochemical staining (IHS) assays showed SV40 Tag expression in 8/20, 40% of MPM specimens. These results indicate that SV40 is linked to a large fraction of MPM. It is worth noting that the prevalence of SV40 Tag antibodies detected in sera from cohort 1 of MPM patients is similar to the prevalence of SV40 Tag found to be expressed in FFPE tissues from MPM cohort 2.

18.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267424

RESUMO

The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.

19.
Microorganisms ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744711

RESUMO

COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.

20.
Front Microbiol ; 12: 789991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970247

RESUMO

Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA