Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt B): 116799, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36413953

RESUMO

The Soil and Water Assessment Tool (SWAT) is a well-established eco-hydrological model that has been extensively applied to watersheds across the globe. This work reviews over two decades (2002-2022) of SWAT studies conducted on Mediterranean watersheds. A total of 260 articles have been identified since the earliest documented use of the model in a Mediterranean catchment back in 2002; of which 62% were carried out in Greece, Italy, or Spain. SWAT applications increased significantly in recent years since 86% of the reviewed papers were published in the past decade. A major objective for most of the reviewed works was to check the applicability of SWAT to specific watersheds. A great number of publications included procedures of calibration and validation and reported performance results. SWAT applications in the Mediterranean region mainly cover water resources quantity and quality assessment and hydrologic and environmental impacts evaluation of land use and climate changes. Nevertheless, a tendency towards a multi-purpose use of SWAT is revealed. The numerous examples of SWAT combined with other tools and techniques outline the model's flexibility. Several studies performed constructive comparisons between Mediterranean watersheds' responses or compared SWAT to other models or methods. The effects of inputs on SWAT outputs and innovative model modifications and improvements were also the focus of some of the surveyed articles. However, a significant number of studies reported difficulties regarding data availability, as these are either scarce, have poor resolution or are not freely available. Therefore, it is highly recommended to identify and develop accurate model inputs and testing data to optimize the SWAT performance.


Assuntos
Solo , Água , Estudos de Viabilidade , Modelos Teóricos , Hidrologia
2.
PLoS One ; 17(9): e0273078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36070304

RESUMO

A growing number of studies suggest that climate may impact the spread of COVID-19. This hypothesis is supported by data from similar viral contagions, such as SARS and the 1918 Flu Pandemic, and corroborated by US influenza data. However, the extent to which climate may affect COVID-19 transmission rates and help modeling COVID-19 risk is still not well understood. This study demonstrates that such an understanding is attainable through the development of regression models that verify how climate contributes to modeling COVID-19 transmission, and the use of feature importance techniques that assess the relative weight of meteorological variables compared to epidemiological, socioeconomic, environmental, and global health factors. The ensuing results show that meteorological factors play a key role in regression models of COVID-19 risk, with ultraviolet radiation (UV) as the main driver. These results are corroborated by statistical correlation analyses and a panel data fixed-effect model confirming that UV radiation coefficients are significantly negatively correlated with COVID-19 transmission rates.


Assuntos
COVID-19 , Influenza Humana , COVID-19/epidemiologia , Clima , Mudança Climática , Humanos , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA