Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088848

RESUMO

Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development. Single-cell RNA sequencing analyses identified pdgfrb+ cells as epicardium-derived cells (EPDCs) and mural cells. Mural cells associated with coronary arteries also express cxcl12b and smooth muscle cell markers. Interestingly, these mural cells remain associated with coronary arteries even in the absence of Pdgfrß, although smooth muscle gene expression is downregulated. We find that pdgfrb expression dynamically changes in EPDCs of regenerating hearts. Differential gene expression analyses of pdgfrb+ EPDCs and mural cells suggest that they express genes that are important for regeneration after heart injuries. mdka was identified as a highly upregulated gene in pdgfrb+ cells during heart regeneration. However, pdgfrb but not mdka mutants show defects in heart regeneration after amputation. Our results demonstrate that heterogeneous pdgfrb+ cells are essential for coronary development and heart regeneration.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Vasos Coronários/metabolismo , Coração/fisiologia , Organogênese/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regeneração/fisiologia , Animais , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Miócitos de Músculo Liso/metabolismo , Pericárdio/metabolismo , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
2.
Dev Biol ; 504: 75-85, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37708968

RESUMO

Tissue development and regeneration are dynamic processes involving complex cell migration and cell-cell interactions. We have developed a protocol for complementary time-lapse and three-dimensional (3D) imaging of tissue for developmental and regeneration studies which we apply here to the zebrafish cardiac vasculature. 3D imaging of fixed specimens is used to first define the subject at high resolution then live imaging captures how it changes dynamically. Hearts from adult and juvenile zebrafish are extracted and cleaned in preparation for the different imaging modalities. For whole-mount 3D confocal imaging, single or multiple hearts with native fluorescence or immuno-labeling are prepared for stabilization or clearing, and then imaged. For live imaging, hearts are placed in a prefabricated fluidic device and set on a temperature-controlled microscope for culture and imaging over several days. This protocol allows complete visualization of morphogenic processes in a 3D context and provides the ability to follow cell behaviors to complement in vivo and fixed tissue studies. This culture and imaging protocol can be applied to different cell and tissue types. Here, we have used it to observe zebrafish coronary vasculature and the migration of coronary endothelial cells during heart regeneration.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Células Endoteliais/metabolismo , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos
3.
J Mol Cell Cardiol ; 150: 32-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038389

RESUMO

Contraction of cardiac myocytes depends on energy generated by the mitochondria. During cardiac development and disease, the structure and function of the mitochondrial network in cardiac myocytes is known to remodel in concert with many other factors, including changes in nutrient availability, hemodynamic load, extracellular matrix (ECM) rigidity, cell shape, and maturation of other intracellular structures. However, the independent role of each of these factors on mitochondrial network architecture is poorly understood. In this study, we tested the hypothesis that cell aspect ratio (AR) and ECM rigidity regulate the architecture of the mitochondrial network in cardiac myocytes. To do this, we spin-coated glass coverslips with a soft, moderate, or stiff polymer. Next, we microcontact printed cell-sized rectangles of fibronectin with AR matching cardiac myocytes at various developmental or disease states onto the polymer surface. We then cultured neonatal rat ventricular myocytes on the patterned surfaces and used confocal microscopy and image processing techniques to quantify sarcomeric α-actinin volume, nucleus volume, and mitochondrial volume, surface area, and size distribution. On some substrates, α-actinin volume increased with cell AR but was not affected by ECM rigidity. Nucleus volume was mostly uniform across all conditions. In contrast, mitochondrial volume increased with cell AR on all substrates. Furthermore, mitochondrial surface area to volume ratio decreased as AR increased on all substrates. Large mitochondria were also more prevalent in cardiac myocytes with higher AR. For select AR, mitochondria were also smaller as ECM rigidity increased. Collectively, these results suggest that mitochondrial architecture in cardiac myocytes is strongly influenced by cell shape and moderately influenced by ECM rigidity. These data have important implications for understanding the factors that impact metabolic performance during heart development and disease.


Assuntos
Forma Celular , Matriz Extracelular/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Actinina/metabolismo , Animais , Engenharia Celular , Tamanho do Núcleo Celular , Tamanho Celular , Ratos Sprague-Dawley
4.
FASEB J ; 34(9): 11562-11576, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652761

RESUMO

In skeletal muscle fibers, mitochondria are densely packed adjacent to myofibrils because adenosine triphosphate (ATP) is needed to fuel sarcomere shortening. However, despite this close physical and biochemical relationship, the effects of mitochondrial dynamics on skeletal muscle contractility are poorly understood. In this study, we analyzed the effects of Mitochondrial Division Inhibitor 1 (mdivi-1), an inhibitor of mitochondrial fission, on the structure and function of both mitochondria and myofibrils in skeletal muscle tissues engineered on micromolded gelatin hydrogels. Treatment with mdivi-1 did not alter myotube morphology, but did increase the mitochondrial turbidity and oxidative capacity, consistent with reduced mitochondrial fission. Mdivi-1 also significantly increased basal, twitch, and tetanus stresses, as measured using the Muscular Thin Film (MTF) assay. Finally, mdivi-1 increased sarcomere length, potentially due to mdivi-1-induced changes in mitochondrial volume and compression of myofibrils. Together, these results suggest that mdivi-1 increases contractile stress generation, which may be caused by an increase in maximal respiration and/or sarcomere length due to increased volume of individual mitochondria. These data reinforce that mitochondria have both biochemical and biomechanical roles in skeletal muscle and that mitochondrial dynamics can be manipulated to alter muscle contractility.


Assuntos
Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinazolinonas/farmacologia , Animais , Linhagem Celular , Dinaminas/metabolismo , Camundongos , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Oxirredução/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/fisiologia
5.
Am J Physiol Heart Circ Physiol ; 315(4): H771-H789, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906229

RESUMO

Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.


Assuntos
Matriz Extracelular/química , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Matriz Extracelular/patologia , Humanos , Miócitos Cardíacos/patologia , Impressão Tridimensional
6.
Am J Physiol Heart Circ Physiol ; 313(4): H757-H767, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733449

RESUMO

Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease.NEW & NOTEWORTHY A new methodology has been developed to measure O2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses.


Assuntos
Matriz Extracelular/fisiologia , Coração/fisiologia , Mitocôndrias Cardíacas/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Elasticidade , Metabolismo Energético/fisiologia , Fibronectinas/metabolismo , Miócitos Cardíacos/fisiologia , Miofibrilas/fisiologia , Consumo de Oxigênio/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 110(24): 9770-5, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716679

RESUMO

The lack of a robust pipeline of medical therapeutic agents for the treatment of heart disease may be partially attributed to the lack of in vitro models that recapitulate the essential structure-function relationships of healthy and diseased myocardium. We designed and built a system to mimic mechanical overload in vitro by applying cyclic stretch to engineered laminar ventricular tissue on a stretchable chip. To test our model, we quantified changes in gene expression, myocyte architecture, calcium handling, and contractile function and compared our results vs. several decades of animal studies and clinical observations. Cyclic stretch activated gene expression profiles characteristic of pathological remodeling, including decreased α- to ß-myosin heavy chain ratios, and induced maladaptive changes to myocyte shape and sarcomere alignment. In stretched tissues, calcium transients resembled those reported in failing myocytes and peak systolic stress was significantly reduced. Our results suggest that failing myocardium, as defined genetically, structurally, and functionally, can be replicated in an in vitro microsystem by faithfully recapitulating the structural and mechanical microenvironment of the diseased heart.


Assuntos
Insuficiência Cardíaca/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/genética , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Modelos Cardiovasculares , Contração Miocárdica/genética , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Sístole/genética , Fatores de Tempo , Miosinas Ventriculares/genética
8.
Proc Natl Acad Sci U S A ; 109(25): 9881-6, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675119

RESUMO

Adhesion between cardiac myocytes is essential for the heart to function as an electromechanical syncytium. Although cell-matrix and cell-cell adhesions reorganize during development and disease, the hierarchical cooperation between these subcellular structures is poorly understood. We reasoned that, during cardiac development, focal adhesions mechanically stabilize cells and tissues during myofibrillogenesis and intercalated disc assembly. As the intercalated disc matures, we postulated that focal adhesions disassemble as systolic stresses are transmitted intercellularly. Finally, we hypothesized that pathological remodeling of cardiac microenvironments induces excessive mechanical loading of intercalated discs, leading to assembly of stabilizing focal adhesions adjacent to the junction. To test our model, we engineered µtissues composed of two ventricular myocytes on deformable substrates of tunable elasticity to measure the dynamic organization and functional remodeling of myofibrils, focal adhesions, and intercalated discs as cooperative ensembles. Maturing µtissues increased systolic force while simultaneously developing into an electromechanical syncytium by disassembling focal adhesions at the cell-cell interface and forming mature intercalated discs that transmitted the systolic load. We found that engineering the microenvironment to mimic fibrosis resulted in focal adhesion formation adjacent to the cell-cell interface, suggesting that the intercalated disc required mechanical reinforcement. In these pathological microenvironments, µtissues exhibited further evidence of maladaptive remodeling, including lower work efficiency, longer contraction cycle duration, and weakened relationships between cytoskeletal organization and force generation. These results suggest that the cooperative balance between cell-matrix and cell-cell adhesions in the heart is guided by an architectural and functional hierarchy established during development and disrupted during disease.


Assuntos
Adesão Celular , Matriz Extracelular , Miocárdio/citologia , Animais , Células Cultivadas , Adesões Focais , Ratos , Ratos Sprague-Dawley , Sístole
9.
Am J Physiol Heart Circ Physiol ; 306(11): H1525-39, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24682394

RESUMO

Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease.


Assuntos
Forma Celular/fisiologia , Matriz Extracelular/fisiologia , Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , Actinas/fisiologia , Animais , Elasticidade , Hidrogéis , Miócitos Cardíacos/citologia , Ratos , Ratos Sprague-Dawley
10.
Circ Res ; 110(11): 1445-53, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22518032

RESUMO

RATIONALE: Spatial heterogeneity in connexin (Cx) expression has been implicated in arrhythmogenesis. OBJECTIVE: This study was performed to quantify the relation between the degree of heterogeneity in Cx43 expression and disturbances in electric propagation. METHODS AND RESULTS: Cell pairs and strands composed of mixtures of Cx43(-/-) (Cx43KO) or GFP-expressing Cx43(+/+) (WT(GFP)) murine ventricular myocytes were patterned using microlithographic techniques. At the interface between pairs of WT(GFP) and Cx43KO cells, dual-voltage clamp showed a marked decrease in electric coupling (approximately 5% of WT) and voltage gating suggested the presence of mixed Cx43/Cx45 channels. Cx43 and Cx45 immunofluorescence signals were not detectable at this interface, probably because of markedly reduced gap junction size. Macroscopic propagation velocity, measured by multisite high-resolution optical mapping of transmembrane potential in strands of cells of mixed Cx43 genotype, decreased with an increasing proportion of Cx43KO cells in the strand. A marked decrease in conduction velocity was observed in strands composed of <50% WT cells. Propagation at the microscopic scale showed a high degree of dissociation between WT(GFP) and Cx43KO cells, but consistent excitation without development of propagation block. CONCLUSIONS: Heterogeneous ablation of Cx43 leads to a marked decrease in propagation velocity in tissue strands composed of <50% cells with WT Cx43 expression and marked dissociation of excitation at the cellular level. However, the small residual electric conductance between Cx43 and WT(GFP) myocytes assures excitation of Cx43(-/-) cells. This explains the previously reported undisturbed contractility in tissues with spatially heterogeneous downregulation of Cx43 expression.


Assuntos
Comunicação Celular , Conexina 43/metabolismo , Acoplamento Excitação-Contração , Ventrículos do Coração/metabolismo , Junções Intercelulares/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Conexina 43/genética , Fibronectinas/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Patch-Clamp , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
11.
Adv Healthc Mater ; : e2401478, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001626

RESUMO

Myocardial infarctions locally deprive myocardium of oxygenated blood and cause immediate cardiac myocyte necrosis. Irreparable myocardium is then replaced with a scar through a dynamic repair process that is an interplay between hypoxic cells of the infarct zone and normoxic cells of adjacent healthy myocardium. In many cases, unresolved inflammation or fibrosis occurs for reasons that are incompletely understood, increasing the risk of heart failure. Crosstalk between hypoxic and normoxic cardiac cells is hypothesized to regulate mechanisms of repair after a myocardial infarction. To test this hypothesis, microfluidic devices are fabricated on 3D printed templates for co-culturing hypoxic and normoxic cardiac cells. This system demonstrates that hypoxia drives human cardiac fibroblasts toward glycolysis and a pro-fibrotic phenotype, similar to the anti-inflammatory phase of wound healing. Co-culture with normoxic fibroblasts uniquely upregulates pro-inflammatory signaling in hypoxic fibroblasts, including increased secretion of tumor necrosis factor alpha (TNF-α). In co-culture with hypoxic fibroblasts, normoxic human induced pluripotent stem cell (hiPSC)-derived cardiac myocytes also increase pro-inflammatory signaling, including upregulation of interleukin 6 (IL-6) family signaling pathway and increased expression of IL-6 receptor. Together, these data suggest that crosstalk between hypoxic fibroblasts and normoxic cardiac cells uniquely activates phenotypes that resemble the initial pro-inflammatory phase of post-infarct wound healing.

12.
Nat Commun ; 15(1): 5891, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003263

RESUMO

Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.


Assuntos
Diferenciação Celular , Receptores Notch , Transdução de Sinais , Engenharia Tecidual , Receptores Notch/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Camundongos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Ligantes , Alicerces Teciduais/química , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Células HEK293
13.
Curr Res Physiol ; 6: 100108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107790

RESUMO

The uterus is susceptible to benign tumors known as fibroids, which have been associated with many pregnancy complications, including preterm labor. However, the impact of fibrotic tissue remodeling on the physiology of the myometrium, the smooth muscle layer of the uterus, is poorly understood, in large part due to a lack of model systems. In this study, we engineered healthy-like and fibrotic-like myometrium by culturing human myometrial smooth muscle cells on polyacrylamide hydrogels micropatterned with fibronectin to independently tune matrix rigidity and tissue alignment, respectively. We then evaluated calcium transients in response to oxytocin stimulation. Isotropic myometrial tissues on stiff substrates (representing fibrotic myometrium) had shorter calcium transients due to shorter decay time compared to aligned myometrial tissues on soft substrates (representing healthy myometrium). Calcium transients in aligned tissues had longer response times and longer decay times than isotropic tissues, irrespective of substrate stiffness. The amplitude of calcium transients was also higher on soft substrates compared to stiff substrates, irrespective of tissue alignment. We also performed RNA sequencing to detect differentially expressed genes between healthy- and fibrotic-like tissues, which revealed that a bitter taste receptor shown to induce smooth muscle relaxation, TAS2R31, was down-regulated in fibrotic-like tissues. Finally, we measured oxytocin-induced calcium transients in response to pre-treatment with progesterone, caffeine, thrombin, and nifedipine to demonstrate applications for our model system in drug screening. Both progesterone and caffeine caused a decrease in calcium transient duration, as expected, while thrombin and nifedipine had less impact. Collectively, our engineered model of the myometrium enables new insights into myometrial mechanobiology and can be extended to identify or screen novel drug targets.

14.
APL Bioeng ; 7(3): 036106, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584027

RESUMO

Drug-induced nephrotoxicity is a leading cause of drug attrition, partly due to the limited relevance of pre-clinical models of the proximal tubule. Culturing proximal tubule epithelial cells (PTECs) under fluid flow to mimic physiological shear stress has been shown to improve select phenotypes, but existing flow systems are expensive and difficult to implement by non-experts in microfluidics. Here, we designed and fabricated an accessible and modular flow system for culturing PTECs under physiological shear stress, which induced native-like cuboidal morphology, downregulated pathways associated with hypoxia, stress, and injury, and upregulated xenobiotic metabolism pathways. We also compared the expression profiles of shear-dependent genes in our in vitro PTEC tissues to that of ex vivo proximal tubules and observed stronger clustering between ex vivo proximal tubules and PTECs under physiological shear stress relative to PTECs under negligible shear stress. Together, these data illustrate the utility of our user-friendly flow system and highlight the role of shear stress in promoting native-like morphological and transcriptomic phenotypes in PTECs in vitro, which is critical for developing more relevant pre-clinical models of the proximal tubule for drug screening or disease modeling.

15.
Am J Physiol Heart Circ Physiol ; 302(2): H443-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081700

RESUMO

Gap junctions are composed of connexin (Cx) proteins, which mediate intercellular communication. Cx43 is the dominant Cx in ventricular myocardium, and Cx45 is present in trace amounts. Cx43 immunosignal has been associated with cell-to-cell coupling and electrical propagation, but no studies have directly correlated Cx43 immunosignal to electrical cell-to-cell conductance, g(j), in ventricular cardiomyocyte pairs. To assess the correlation between Cx43 immunosignal and g(j), we developed a method to determine both parameters from the same cell pair. Neonatal rat ventricular cardiomyocytes were seeded on micropatterned islands of fibronectin. This allowed formation of cell pairs with reproducible shapes and facilitated tracking of cell pair locations. Moreover, cell spreading was limited by the fibronectin pattern, which allowed us to increase cell height by reducing the surface area of the pattern. Whole cell dual voltage clamp was used to record g(j) of cell pairs after 3-5 days in culture. Fixation of cell pairs before removal of patch electrodes enabled preservation of cell morphology and offline identification of patched pairs. Subsequently, pairs were immunostained, and the volume of junctional Cx43 was quantified using confocal microscopy, image deconvolution, and three-dimensional reconstruction. Our results show a linear correlation between g(j) and Cx43 immunosignal within a range of 8-50 nS.


Assuntos
Comunicação Celular/fisiologia , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Condutividade Elétrica , Ventrículos do Coração/citologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Ratos
16.
Methods Mol Biol ; 2485: 133-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618903

RESUMO

Many acquired or inherited forms of heart disease as well as drugs are known to increase the susceptibility of patients to arrhythmias. To predict arrhythmogenic events and discover new therapeutic strategies to mitigate them, approaches to efficiently quantify the velocity of propagation in engineered cardiac tissues are important research tools. In this chapter, we describe how to collect videos of propagating calcium waves in engineered cardiac tissues with a high-speed camera mounted on an inverted fluorescence microscope. We also provide instructions for downloading and using our software package to analyze these videos and calculate propagation velocity. These techniques should be compatible with a variety of voltage- or calcium-sensitive fluorescent dyes or genetically encoded sensors. Although these approaches were originally developed for engineered neonatal rat cardiac tissues, the same procedures can likely be used with human-induced pluripotent stem cell-derived cardiac myocytes, paving the way for patient-specific analysis of propagation due to features such as tissue architecture, substrate rigidity, genetic mutations, or drug treatments.


Assuntos
Miócitos Cardíacos , Engenharia Tecidual , Animais , Arritmias Cardíacas , Cálcio , Humanos , Microscopia de Fluorescência , Ratos , Software , Engenharia Tecidual/métodos
17.
Sci Adv ; 8(49): eabn7097, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475790

RESUMO

After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.

18.
Front Cell Dev Biol ; 10: 830415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465312

RESUMO

In vitro models of patient-derived muscle allow for more efficient development of genetic medicines for the muscular dystrophies, which often present mutation-specific pathologies. One popular strategy to generate patient-specific myotubes involves reprogramming dermal fibroblasts to a muscle lineage through MyoD induction. However, creating physiologically relevant, reproducible tissues exhibiting multinucleated, aligned myotubes with organized striations is dependent on the introduction of physicochemical cues that mimic the native muscle microenvironment. Here, we engineered patient-specific control and dystrophic muscle tissues in vitro by culturing and differentiating MyoD-directly reprogrammed fibroblasts isolated from one healthy control subject, three patients with Duchenne muscular dystrophy (DMD), and two Limb Girdle 2A/R1 (LGMD2A/R1) patients on micromolded gelatin hydrogels. Engineered DMD and LGMD2A/R1 tissues demonstrated varying levels of defects in α-actinin expression and organization relative to control, depending on the mutation. In genetically relevant DMD tissues amenable to mRNA reframing by targeting exon 44 or 45 exclusion, exposure to exon skipping antisense oligonucleotides modestly increased myotube coverage and alignment and rescued dystrophin protein expression. These findings highlight the value of engineered culture substrates in guiding the organization of reprogrammed patient fibroblasts into aligned muscle tissues, thereby extending their value as tools for exploration and dissection of the cellular and molecular basis of genetic muscle defects, rescue, and repair.

19.
Pflugers Arch ; 462(1): 89-104, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21499986

RESUMO

Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease, requiring cardiac myocytes to be mechanically durable and capable of fusing a variety of environmental signals on different time scales. During physiological growth, myocytes adaptively remodel to mechanical loads. Pathological stimuli can induce maladaptive remodeling. In both of these conditions, the cytoskeleton plays a pivotal role in both sensing mechanical stress and mediating structural remodeling and functional responses within the myocyte.


Assuntos
Citoesqueleto/ultraestrutura , Coração/fisiologia , Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Estresse Mecânico , Caderinas/metabolismo , Citoesqueleto/metabolismo , Elasticidade , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Hemodinâmica , Integrinas/metabolismo , Mecanorreceptores/metabolismo , Microtúbulos/metabolismo , Proteínas Musculares/metabolismo
20.
Front Cardiovasc Med ; 8: 709871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336962

RESUMO

Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA