Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 80(4): 699-711.e7, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33091336

RESUMO

CCCTC-binding factor (CTCF) and cohesin play critical roles in organizing mammalian genomes into topologically associating domains (TADs). Here, by combining genetic engineering with quantitative super-resolution stimulated emission depletion (STED) microscopy, we demonstrate that in living cells, CTCF forms clusters typically containing 2-8 molecules. A fraction of CTCF clusters, enriched for those with ≥3 molecules, are coupled with cohesin complexes with a characteristic physical distance suggestive of a defined molecular interaction. Acute degradation of the cohesin unloader WAPL or transcriptional inhibition (TI) result in increased CTCF clustering. Furthermore, the effect of TI on CTCF clusters is alleviated by the acute loss of the cohesin subunit SMC3. Our study provides quantitative characterization of CTCF clusters in living cells, uncovers the opposing effects of cohesin and transcription on CTCF clustering, and highlights the power of quantitative super-resolution microscopy as a tool to bridge the gap between biochemical and genomic methodologies in chromatin research.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/citologia , Microscopia de Fluorescência/métodos , Proteínas/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Mamíferos , Células-Tronco Embrionárias/metabolismo , Loci Gênicos , Genoma , Processamento de Imagem Assistida por Computador , Camundongos , Proteínas/genética , Coesinas
2.
Langmuir ; 33(42): 11366-11376, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28764322

RESUMO

We employ classical density functional theory (DFT) to investigate the phase behavior and composition of binary mixtures; each compound consists of hard spheres of different sizes with superimposed dispersion attraction. In addition to the dispersion attraction, molecules of one component carry an additional three-dimensional magnetic "spin" where the orientation-dependent spin-spin interaction is accounted for by the Heisenberg model. We are treating the excess free energy using a modified mean-field approximation (second virial coefficient) for the orientation-dependent pair correlation function. Depending on the concentration of the magnetic particles, the strength of the spin-spin coupling, and the size ratio of the particles, the model predicts the formation of ordered (polar) phases in addition to the more conventional gas and isotropic liquid phases. Key features of our model are a particle-size dependent shift of the gas-liquid critical point (critical temperature and density) and a change in the width of the phase diagram. In the near-critical region, the latter can be analyzed quantitativly in terms of an effective critical exponent ßeff that may differ from the classical critical exponent [Formula: see text]; the classical value is attained in the immediate vicinity of the critical point as it must. The deviation between ßeff and ß can be linked to nontrivial composition effects along the phase boundaries.

3.
J Radiol Oncol ; 7(1): 20-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539093

RESUMO

The nanometer-scale spatial organization of immune receptors plays a role in cell activation and suppression. While the connection between this spatial organization and cell signaling events is emerging from cell culture experiments, how these results translate to more physiologically relevant settings like the tumor microenvironment remains poorly understood due to the challenges of high-resolution imaging in vivo. Here we perform super-resolution immunofluorescence microscopy of human melanoma tissue sections to examine the spatial organization of the immune checkpoint inhibitor programmed cell death 1 (PD-1). We show that PD-1 exhibits a variety of organizations ranging from nanometer-scale clusters to more uniform membrane labeling. Our results demonstrate the capability of super-resolution imaging to examine the spatial organization of immune checkpoint markers in the tumor microenvironment, suggesting a future direction for both clinical and immunology research.

4.
Nat Commun ; 11(1): 4818, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968060

RESUMO

Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


Assuntos
Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Inativação de Genes , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestrutura , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/ultraestrutura , Miosinas/metabolismo , Pseudópodes/metabolismo , Receptor EphB2
5.
J Phys Chem Lett ; 8(17): 4183-4190, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28829138

RESUMO

Solid-state solvation (SSS) is a solid-state analogue of solvent-solute interactions in the liquid state. Although it could enable exceptionally fine control over the energetic properties of solid-state devices, its molecular mechanisms have remained largely unexplored. We use ultrafast transient absorption and optical Kerr effect spectroscopies to independently track and correlate both the excited-state dynamics of an organic emitter and the polarization anisotropy relaxation of a small polar dopant embedded in an amorphous polystyrene matrix. The results demonstrate that the dopants are able to rotationally reorient on ultrafast time scales following light-induced changes in the electronic configuration of the emitter, minimizing the system energy. The solid-state dopant-emitter dynamics are intrinsically analogous to liquid-state solvent-solute interactions. In addition, tuning the dopant/polymer pore ratio offers control over solvation dynamics by exploiting molecular-scale confinement of the dopants by the polymer matrix. Our findings will enable refined strategies for tuning optoelectronic material properties using SSS and offer new strategies to investigate mobility and disorder in heterogeneous solid and glassy materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA