Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Theor Appl Genet ; 136(9): 198, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615732

RESUMO

KEY MESSAGE: Leaf rust resistance gene Lr2a was located to chromosome arm 2DS in three mapping populations, which will facilitate map-based cloning and marker-assisted selection of Lr2a in wheat breeding programs. Incorporating effective leaf rust resistance (Lr) genes into high-yielding wheat cultivars has been an efficient method of disease control. One of the most widely used genes in Canada is the multi-allelic resistance gene Lr2, with alleles Lr2a, Lr2b, Lr2c, and Lr2d. The Lr2a allele confers complete resistance to a large portion of the Puccinia triticina (Pt) population in Canada. In this study, Lr2a was genetically mapped in two doubled haploid populations developed from the crosses Superb/BW278 and Superb/86ISMN 2137, and an F2 population developed from the cross Chinese Spring/RL6016. Seedlings were tested with the Lr2a avirulent Pt races 74-2 MGBJ (Superb/BW278) and 12-3 MBDS (Superb/86ISMN 2137 and Chinese Spring/RL6016) in greenhouse assays and were genotyped with 90K wheat Infinium SNP and kompetitive allele-specific PCR (KASP) markers. Lr2a was mapped to a collinear position on chromosome arm 2DS in all three populations, within a 1.00 cM genetic interval between KASP markers kwm1620 and kwm1623. This corresponded to a 305 kb genomic region of chromosome 2D in Chinese Spring RefSeq v2.1. The KASP marker kwh740 was predictive of Lr2a in all mapping populations. A panel of 260 wheats were tested with three Pt isolates, which revealed that Lr2a is common in Canadian wheats. The KASP markers kwh740 and kwm1584 were highly associated with resistance at the Lr2 locus, while kwm1622 was slightly less correlated. Genetic mapping of the leaf rust resistance gene Lr2a and DNA markers developed here will facilitate its use in wheat breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Canadá , Mapeamento Cromossômico
2.
Theor Appl Genet ; 136(9): 202, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642745

RESUMO

KEY MESSAGE: Genome-wide association study of diverse barley genotypes identified loci, single nucleotide polymorphisms and candidate genes that control seed dormancy and therefore enhance resistance to preharvest sprouting. Preharvest sprouting (PHS) causes significant yield and quality loss in barley and it is strongly associated with the level of seed dormancy. This study performed genome-wide association study using a collection of 255 diverse barley genotypes grown over four environments to identify loci controlling dormancy/PHS. Our phenotypic analysis revealed substantial variation in germination index/dormancy levels among the barley genotypes. Marker-trait association and linkage disequilibrium (LD) decay analyses identified 16 single nucleotide polymorphisms (SNPs) and two QTLs associated with dormancy/PHS, respectively, on chromosome 3H and 5H explaining 6.9% to 11.1% of the phenotypic variation. QTL.5H consist of 14 SNPs of which 12 SNPs satisfy the FDR threshold of α = 0.05, and it may represent the SD2 locus. The QTL on 3H consists of one SNP that doesn't satisfy FDR (α = 0.05). Genes harbouring the significant SNPs were analyzed for their expression pattern in the seeds of selected dormant and non-dormant genotypes. Of these genes, HvRCD1, HvPSRP1 and HvF3H exhibited differential expression between the dormant and non-dormant seed samples, suggesting their role in controlling seed dormancy/PHS. Three SNPs located within the differentially expressed genes residing in QTL.5H explained considerable phenotypic variation (≥ 8.6%), suggesting their importance in regulating PHS resistance. Analysis of the SNP marker data in QTL.5H identified a haplotype for PHS resistance. Overall, the study identified loci, SNPs and candidate genes that control dormancy and therefore play important roles in enhancing PHS resistance in barley through marker-assisted breeding.


Assuntos
Hordeum , Hordeum/genética , Estudo de Associação Genômica Ampla , Transcriptoma , Melhoramento Vegetal , Genótipo
3.
Theor Appl Genet ; 135(7): 2247-2263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597885

RESUMO

KEY MESSAGE: This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types. Quantitative trait loci (QTL) that are effective against several of the resistance types give valuable contributions to resistance breeding. A spring wheat panel of 300 cultivars and breeding lines of Nordic and exotic origins was tested in artificially inoculated field trials and subjected to visual FHB assessment in the years 2013-2015, 2019 and 2020. Deoxynivalenol (DON) content was measured on harvested grain samples, and anther extrusion (AE) was assessed in separate trials. Principal component analysis based on 35 and 25 K SNP arrays revealed the existence of two subgroups, dividing the panel into European and exotic lines. We employed a genome-wide association study to detect QTL associated with FHB traits and identify marker-trait associations that consistently influenced FHB resistance. A total of thirteen QTL were identified showing consistent effects across FHB resistance traits and environments. Haplotype analysis revealed a highly significant QTL on 7A, Qfhb.nmbu.7A.2, which was further validated on an independent set of breeding lines. Breeder-friendly KASP markers were developed for this QTL that can be used in marker-assisted selection. The lines in the wheat panel harbored from zero to five resistance alleles, and allele stacking showed that resistance can be significantly increased by combining several of these resistance alleles. This information enhances breeders´ possibilities for genomic prediction and to breed cultivars with improved FHB resistance.


Assuntos
Resistência à Doença , Fusarium , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
4.
Theor Appl Genet ; 134(1): 113-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33001261

RESUMO

KEY MESSAGE: Combination of RL4137 alleles at three QTLs on chromosomes 4A, 6B and 6D, and 'Roblin' allele at a novel QTL on chromosome 1D increases pre-harvest sprouting resistance in 'Roblin'/RL4137 doubled haploid population. Pre-harvest sprouting (PHS) significantly reduces wheat grain yield and quality. Therefore, identifying quantitative trait loci (QTL) for PHS resistance is key to facilitate marker-assisted breeding. To this end, we studied PHS in a population of 330 doubled haploid (DH) lines derived from 'Roblin'/RL4137. The parental and DH lines were examined for their PHS phenotype based on speed of germination index in five environments and genotyped using the wheat Infinium 90 K SNP array. A total of five QTLs were detected on linkage groups 1D, 4A.2, 6B.1, 6D and 7A over the five environments. The QTL QPhs.umb-4A on linkage group 4A.2 was the most consistent across all environments and explained 40-50% of phenotypic variation. The QTL on 1D is a novel QTL and explained 1.99-2.33% of phenotypic variation. The QTLs on 6B.1 and 6D each explained 3.09-4.33% and 1.62-2.45% of phenotypic variation, respectively. A combination of four stable QTLs on linkage groups 1D, 4A.2, 6B.1 and 6D greatly increased PHS resistance. Allelic effects for the QTLs QPhs.umb-4A, QPhs.umb-6B and QPhs.umb-6D were contributed by RL4137, whereas 'Roblin' contributed the resistant allele for QPhs.umb-1D. QPhs.umb-4A was required for strong dormancy in the 'Roblin'/RL4137 DH population, and the presence of QTLs QPhs.umb-1D, QPhs.umb-6B and QPhs.umb-6D incrementally increased dormancy; DH lines carrying all four QTLs are considerably more dormant than those carrying only QPhs.umb-4A or none of the four QTLs. Thus, the QTLs identified in this study have the potential to improve PHS resistance in spring wheat.


Assuntos
Germinação/genética , Dormência de Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Ligação Genética , Genótipo , Haploidia , Fenótipo , Melhoramento Vegetal , Triticum/fisiologia
5.
Theor Appl Genet ; 134(2): 647-660, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33200319

RESUMO

KEY MESSAGE: A major QTL for oviposition deterrence to orange wheat blossom midge was detected on chromosome 1A in the Canadian breeding line BW278 that was inherited from the Chinese variety Sumai-3. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin, Diptera: Cecidomyiidae) is an important insect pest of wheat (Triticum aestivum L.) that reduces both grain yield and quality. Oviposition deterrence results in a reduction of eggs deposited on spikes relative to that observed on a wheat line preferred by OWBM. Quantification of oviposition deterrence is labor-intensive, so wheat breeders require efficient DNA markers for the selection of this trait. The objective of this study was to identify quantitative trait loci (QTL) for oviposition deterrence in a doubled haploid (DH) population developed from the spring wheat cross Superb/BW278. The DH population and check varieties were evaluated for OWBM kernel damage from five field nurseries over three growing seasons. QTL analysis identified major effect loci on chromosomes 1A (QSm.mrc-1A) and 5A (QSm.mrc-5A). Reduced kernel damage was contributed by BW278 at QSm.mrc-1A and Superb at QSm.mrc-5A. QSm.mrc-1A mapped to the approximate location of the oviposition deterrence QTL previously found in the American variety Reeder. However, haplotype analysis revealed that BW278 inherited this oviposition deterrence allele from the Chinese spring wheat variety Sumai-3. QSm.mrc-5A mapped to the location of awn inhibitor gene B1, suggesting that awns hinder OWBM oviposition. Single-nucleotide polymorphisms (SNPs) were identified for predicting the presence or absence of QSm.mrc-1A based upon haplotype. Functional annotation of candidate genes in 1A QTL intervals revealed eleven potential candidate genes, including a gene involved in terpenoid biosynthesis. SNPs for QSm.mrc-1A and fully awned spikes provide a basis for the selection of oviposition deterrence to OWBM.


Assuntos
Ceratopogonidae/anatomia & histologia , Ceratopogonidae/fisiologia , Resistência à Doença/genética , Genes de Plantas , Oviposição , Doenças das Plantas/genética , Triticum/genética , Animais , Mapeamento Cromossômico , Resistência à Doença/imunologia , Haploidia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/parasitologia
6.
BMC Plant Biol ; 20(1): 314, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620083

RESUMO

BACKGROUND: The genetics of resistance to loose smut of wheat (Triticum aestivum L.) caused by the fungus Ustilago tritici (Pers.) Rostr. is not well understood. This study examines loose smut resistance in Sonop (TD-14), a South African spring wheat variety. A doubled haploid (DH) population of 163 lines derived from the cross Diamont/TD-14 was studied. The parents and progenies were inoculated with U. tritici races T2, T9, and T39 individually in growth facilities at Morden and Swift Current, Canada. Loose smut incidence (LSI) and partial loose smut resistance (PLSR) were assessed. RESULTS: A whole genome linkage map was developed consisting of 11,519 SNP loci found on 31 linkage groups spanning 2845 cM. A new major resistance gene Ut11 was located to the distal end of chromosome arm 7BS. Ut11 conferred resistance to U. tritici race T2, but not races T9 and T39. Quantitative trait locus (QTL) mapping identified four QTL controlling LSI in the Diamont/TD-14 DH population on chromosomes 3B, 4B, 5B, and 7B (at Ut11) with TD-14 contributing the resistance alleles at three of these loci. The major QTL QUt.mrc-5B was effective against all three races and explained up to 81% of the phenotypic variation. The only QTL identified for PLSR coincided with the LSI QTL QUt.mrc-5B indicating that this locus affected both loose smut incidence and partial smutting of spikes. CONCLUSIONS: A race-specific resistance gene Ut11 and a broadly effective resistance QTL QUt.mrc-5B were the main loci controlling loose smut resistance in the differential line TD-14 (cultivar Sonop). This study provides insight into the genetics of loose smut resistance in spring wheat Sonop and the single nucleotide polymorphism (SNP) markers linked to the resistance gene Ut11 and QTL QUt.mrc-5B will be useful for selecting loose smut resistance in breeding programs.


Assuntos
Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Ligação Genética , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia
7.
New Phytol ; 225(1): 340-355, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469444

RESUMO

Awns, bristle-like structures extending from grass lemmas, provide protection against predators, contribute to photosynthesis and aid in grain dispersal. In wheat, selection of awns with minimal extension, termed awnletted, has occurred during domestication by way of loci that dominantly inhibit awn development, such as Tipped1 (B1), Tipped2 (B2), and Hooded (Hd). Here we identify and characterize the B1 gene. B1 was identified using bulked segregant RNA-sequencing of an F2 durum wheat population and through deletion mapping of awned bread wheat mutants. Functional characterization was accomplished by gene overexpression while haplotype analyses assessed B1 polymorphisms and genetic variation. Located on chromosome 5A, B1 is a C2H2 zinc finger encoding gene with ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. Constitutive overexpression of B1 in awned wheat produced an awnletted phenotype with pleiotropic effects on plant height and fertility. Transcriptome analysis of B1 overexpression plants suggests a role as transcriptional repressor, putatively targeting pathways involved in cell proliferation. Haplotype analysis revealed a conserved B1 coding region with proximal polymorphisms and supported the contention that B1 is mainly responsible for awnletted wheats globally. B1, predominantly responsible for awn inhibition in wheat, encodes a C2H2 zinc finger protein with EAR motifs which putatively functions as a transcriptional repressor.


Assuntos
Genes Dominantes , Loci Gênicos , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Triticum/anatomia & histologia , Triticum/genética , Dedos de Zinco , Motivos de Aminoácidos , Pão , Proliferação de Células/genética , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Haplótipos/genética , Ácidos Indolacéticos/metabolismo , Família Multigênica , Mutação/genética , Fases de Leitura Aberta/genética , Desenvolvimento Vegetal/genética , Polimorfismo Genético
8.
Theor Appl Genet ; 133(4): 1109-1122, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31938813

RESUMO

KEY MESSAGE: SNP loci linked to the crown rust resistance gene Pc98 were identified by linkage analysis and KASP assays were developed for marker-assisted selection in breeding programs. Crown rust is among the most damaging diseases of oat and is caused by Puccinia coronata var. avenae f. sp. avenae (Urban and Marková) (Pca). Host resistance is the preferred method to prevent crown rust epidemics. Pc98 is a race-specific, seedling crown rust resistance gene obtained from the wild oat Avena sterilis accession CAV 1979 that is effective at all growth stages of oat. Virulence to Pc98 has been very low in the Pca populations that have been tested. The objectives of this study were to develop SNP markers linked to Pc98 for use in marker-assisted selection and to locate Pc98 on the oat consensus map. The Pc98 gene was mapped using F2:3 populations developed from the crosses Pc98/Bingo and Pc98/Kasztan, where Pc98 is a single-gene line carrying Pc98. Both populations were evaluated in seedling inoculation experiments. Pc98 was mapped relative to Kompetitive Allele-Specific PCR SNP markers in both populations, placing Pc98 on the Mrg20 linkage group of the consensus map. Pc98 was bracketed by two SNP markers GMI_ES22_c3052_382_kom399 and GMI_ES14_lrc18344_662_kom398 in the Pc98/Bingo mapping population with genetic distances of 0.9 cM and 0.3 cM, respectively. Pc98 co-segregated with four SNP markers in the Pc98/Kasztan population, and the closest flanking markers were GMI_DS_LB_6017_kom367 and avgbs2_153634.1.59_kom410 with genetic distances of 0.7 cM and 0.3 cM, respectively. Two SNP loci defined a haplotype that accurately predicted Pc98 status in a diverse group of oat germplasm, which will be valuable for marker-assisted selection of Pc98 in breeding of new oat cultivars.


Assuntos
Avena/genética , Avena/microbiologia , Basidiomycota/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Segregação de Cromossomos/genética , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Haplótipos/genética
9.
Theor Appl Genet ; 133(10): 2775-2796, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556394

RESUMO

KEY MESSAGE: QTL analyses of two bi-parental mapping populations with AC Barrie as a parent revealed numerous FHB-resistance QTL unique to each population and uncovered novel variation near Fhb1. Fusarium head blight (FHB) is a destructive disease of wheat worldwide, leading to severe yield and quality losses. The genetic basis of native FHB resistance was examined in two populations: a recombinant inbred line population from the cross Cutler/AC Barrie and a doubled haploid (DH) population from the cross AC Barrie/Reeder. Numerous QTL were detected among the two mapping populations with many being cross-specific. Photoperiod insensitivity at Ppd-D1 and dwarfing at Rht-B1 and Rht-D1 was associated with increased FHB susceptibility. Anthesis date QTL at or near the Vrn-A1 and Vrn-B1 loci co-located with major FHB-resistance QTL in the AC Barrie/Reeder population. The loci were epistatic for both traits, such that DH lines with both late alleles were considerably later to anthesis and had reduced FHB symptoms (i.e., responsible for the epistatic interaction). Interestingly, AC Barrie contributed FHB resistance near the Fhb1 locus in the Cutler population and susceptibility in the Reeder population. Analyses of the Fhb1 candidate genes PFT and TaHRC confirmed that AC Barrie, Cutler, and Reeder do not carry the Sumai-3 Fhb1 gene. Resistance QTL were also detected at the expected locations of Fhb2 and Fhb5. The native FHB-resistance QTL detected near Fhb1, Fhb2, and Fhb5 do not appear to be as effective as Fhb1, Fhb2, and Fhb5 from Sumai-3. The presence of awns segregated at the B1 awn inhibitor locus in both populations, but was only associated with FHB resistance in the Cutler/AC Barrie population suggesting linkage caused the association rather than pleiotropy.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Fusarium/patogenicidade , Genes de Plantas , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
10.
Theor Appl Genet ; 133(1): 259-270, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31637459

RESUMO

KEY MESSAGE: The widely deployed, oat stem rust resistance gene Pg13 was mapped by linkage analysis and association mapping, and KASP markers were developed for marker-assisted selection in breeding programs. Pg13 is one of the most extensively deployed stem rust resistance genes in North American oat cultivars. Identification of markers tightly linked to this gene will be useful for routine marker-assisted selection, identification of gene pyramids, and retention of the gene in backcrosses and three-way crosses. To this end, high-density linkage maps were constructed in four bi-parental mapping populations using SNP markers identified from 6K oat Infinium iSelect and genotyping-by-sequencing platforms. Additionally, genome-wide associations were identified using two sets of association panels consisting of diverse elite oat lines in one set and landrace accessions in the other. The results showed that Pg13 was located at approximately 67.7 cM on linkage group Mrg18 of the consensus genetic map. The gene co-segregated with the 7C-17A translocation breakpoint and with crown rust resistance gene Pc91. Co-segregating markers with the best prediction accuracy were identified at 67.7-68.5 cM on Mrg18. KASP assays were developed for linked SNP loci for use in oat breeding.


Assuntos
Avena/genética , Avena/microbiologia , Basidiomycota/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Caules de Planta/microbiologia , Segregação de Cromossomos/genética , Estudos de Associação Genética , Marcadores Genéticos , Haplótipos/genética , Doenças das Plantas/microbiologia , Caules de Planta/genética , Polimorfismo de Nucleotídeo Único/genética
11.
Phytopathology ; 110(10): 1721-1726, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32915112

RESUMO

Stem rust is an important disease of cultivated oat (Avena sativa) caused by Puccinia graminis f. sp. avenae. In North America, host resistance is the primary strategy to control this disease and is conferred by a relatively small number of resistance genes. Pg2 is a widely deployed stem rust resistance gene that originates from cultivated oat. Oat breeders wish to develop cultivars with multiple Pg genes to slow the breakdown of single gene resistance, and often require DNA markers suited for marker-assisted selection. Our objectives were to (i) construct high density linkage maps for a major oat stem rust resistance gene using three biparental mapping populations, (ii) develop Kompetitive allele-specific PCR (KASP) assays for Pg2-linked single-nucleotide polymorphisms (SNPs), and (iii) test the prediction accuracy of those markers with a diverse panel of spring oat lines and cultivars. Genotyping-by-sequencing SNP markers linked to Pg2 were identified in an AC Morgan/CDC Morrison recombinant inbred line (RIL) population. Pg2-linked SNPs were then analyzed in an AC Morgan/RL815 F2 population and an AC Morgan/CDC Dancer RIL population. Linkage analysis identified a common location for Pg2 in all three populations on linkage group Mrg20 of the oat consensus genetic map. The most predictive markers were identified and converted to KASP assays for use in oat breeding programs. When used in combination, the KASP assays for the SNP loci avgbs2_126549.1.46 and avgbs_cluster_23819.1.27 were highly predictive of Pg2 status in panel of 54 oat breeding lines and cultivars.


Assuntos
Avena/genética , Basidiomycota , Mapeamento Cromossômico , Resistência à Doença/genética , Ligação Genética , Humanos , América do Norte , Doenças das Plantas , Polimorfismo de Nucleotídeo Único/genética
12.
Plant Dis ; 104(5): 1507-1513, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32150502

RESUMO

Crown rust, caused by Puccinia coronata f. sp. avenae Eriks. (Pca), is among the most important oat diseases resulting in significant yield losses in many growing regions. A gene-for-gene interaction is well established in this pathosystem and has been exploited by oat breeders to control crown rust. Pc39 is a seedling crown rust resistance gene that has been widely deployed in North American oat breeding. DNA markers are desired to accurately predict the specific Pc genes present in breeding germplasm. The objectives of the study were as follows: (i) to map Pc39 in two recombinant inbred line (RIL) populations (AC Assiniboia/MN841801 and AC Medallion/MN841801) and (ii) to identify single nucleotide polymorphism (SNP) markers for postulation of Pc39 in oat germplasm. Pc39 was mapped to a linkage group consisting of 16 SNP markers, which placed the gene on linkage group Mrg11 (chromosome 1C) of the oat consensus map. Pc39 cosegregated with SNP marker GMI_ES01_c12570_390 in the AC Assiniboia/MN841801 RIL population and was flanked by the SNP markers avgbs_126086.1.41 and GMI_ES15_c276_702, with genetic distances of 1.7 and 0.3 cM, respectively. In the AC Medallion/MN841801 RIL population, similar results were obtained but the genetic distances of the flanking markers were 0.4 and 0.4 cM, respectively. Kompetitive Allele-Specific PCR assays were successfully designed for Pc39-linked SNP loci. Two SNP loci defined a haplotype that accurately predicted Pc39 status in a diverse panel of oat germplasm and will be useful for marker-assisted selection in oat breeding.


Assuntos
Avena , Basidiomycota , Ligação Genética , Doenças das Plantas , Polimorfismo de Nucleotídeo Único
13.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599868

RESUMO

Fusarium head blight (FHB) is one of the most devastating wheat disease due to its direct detrimental effects on grain-yield, quality and marketability. Resistant cultivars offer the most effective approach to manage FHB; however, the lack of different resistance resources is still a major bottleneck for wheat breeding programs. To identify and dissect FHB resistance, a doubled haploid wheat population produced from the Canadian spring wheat cvs AAC Innova and AAC Tenacious was phenotyped for FHB response variables incidence and severity, visual rating index (VRI), deoxynivalenol (DON) content, and agronomic traits days to anthesis (DTA) and plant height (PHT), followed by single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker genotyping. A high-density map was constructed consisting of 10,328 markers, mapped on all 21 chromosomes with a map density of 0.35 cM/marker. Together, two major quantitative trait loci for FHB resistance were identified on chromosome 2D from AAC Tenacious; one of these loci on 2DS also colocated with loci for DTA and PHT. Another major locus for PHT, which cosegregates with locus for low DON, was also identified along with many minor and epistatic loci. QTL identified from AAC Tenacious may be useful to pyramid FHB resistance.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Fusarium/fisiologia , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Interações Hospedeiro-Parasita , Melhoramento Vegetal , Triticum/metabolismo , Triticum/microbiologia
14.
BMC Plant Biol ; 17(1): 45, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202046

RESUMO

BACKGROUND: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/genética , Marcadores Genéticos , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Plântula/genética , Plântula/microbiologia
15.
Theor Appl Genet ; 129(11): 2171-2177, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27506534

RESUMO

KEY MESSAGE: Resistance to Ug99 stem rust in Triumph 64 was conferred by SrTmp on chromosome arm 6DS and was mapped to the same position as SrCad and Sr42 , however, the three genes show functional differences. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat that can be controlled by effective stem rust resistance (Sr) genes. The emergence of virulent Pgt races in Africa, namely Ug99 and its variants, has stimulated the search for new Sr genes and genetic characterization of known sources of resistance. Triumph 64 is a winter wheat cultivar that carries gene SrTmp, which confers resistance to Ug99. The goals of this study were to genetically map SrTmp and examine its relationship with other Sr genes occupying a similar chromosome location. A doubled haploid (DH) population from the cross LMPG-6S/Triumph 64 was inoculated with Ug99 at the seedling stage. A single gene conditioning resistance to Ug99 segregated in the population. Genetic mapping with SSR markers placed SrTmp on chromosome arm 6DS in a region similar to SrCad and Sr42. SNP markers developed for SrCad were used to further map SrTmp and were also added to a genetic map of Sr42 using a DH population (LMPG-6S/Norin 40). Three SNP markers that co-segregated with SrTmp also co-segregated with SrCad and Sr42. The SNP markers showed no difference in the map locations of SrTmp, SrCad, and Sr42. Multi-race testing with DH lines from the Triumph 64 and Norin 40 populations and a recombinant inbred-line population from the cross LMPG-6S/AC Cadillac showed that SrTmp, SrCad, and Sr42 confer different spectra of resistance. Markers closely linked to SrTmp are suitable for marker-assisted breeding and germplasm development.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Plântula/microbiologia
16.
Theor Appl Genet ; 129(7): 1373-1382, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27091129

RESUMO

KEY MESSAGE: New SNP markers that can be used for marker-assisted selection and map-based cloning saturate the chromosome region carrying SrCad , a wheat gene that confers resistance to Ug99 stem rust. Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a devastating disease of wheat worldwide. Development of cultivars with effective resistance has been the primary means to control this disease, but the appearance of new virulent strains such as Ug99 has rendered most wheat varieties vulnerable. The stem rust resistance gene SrCad located on chromosome arm 6DS has provided excellent resistance to various strains of Ug99 in field nurseries conducted in Njoro, Kenya since 2005. Three genetic populations were used to identify SNP markers closely linked to the SrCad locus. Of 220 SNP markers evaluated, 27 were found to be located within a 2 cM region surrounding SrCad. The diagnostic potential of these SNPs was evaluated in a diverse set of 50 wheat lines that were primarily of Canadian origin with known presence or absence of SrCad. Three SNP markers tightly linked proximally to SrCad and one SNP that co-segregated with SrCad were completely predictive of the presence or absence of SrCad. These markers also differentiated SrCad from Sr42 and SrTmp which are also located in the same region of chromosome arm 6DS. These markers should be useful in marker-assisted breeding to develop new wheat varieties containing SrCad-based resistance to Ug99 stem rust.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Basidiomycota , Ligação Genética , Marcadores Genéticos , Técnicas de Genotipagem , Haplótipos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/microbiologia
17.
Theor Appl Genet ; 129(8): 1507-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27160855

RESUMO

KEY MESSAGE: SNP markers were developed for the OWBM resistance gene Sm1 that will be useful for MAS. The wheat Sm1 region is collinear with an inverted syntenic interval in B. distachyon. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin) is an important insect pest of wheat (Triticum aestivum) in many growing regions. Sm1 is the only described OWBM resistance gene and is the foundation of managing OWBM through host genetics. Sm1 was previously mapped to wheat chromosome arm 2BS relative to simple sequence repeat (SSR) markers and the dominant, sequence characterized amplified region (SCAR) marker WM1. The objectives of this research were to saturate the Sm1 region with markers, develop improved markers for marker-assisted selection (MAS), and examine the synteny between wheat, Brachypodium distachyon, and rice (Oryza sativa) in the Sm1 region. The present study mapped Sm1 in four populations relative to single nucleotide polymorphisms (SNPs), SSRs, Diversity Array Technology (DArT) markers, single strand conformation polymorphisms (SSCPs), and the SCAR WM1. Numerous high quality SNP assays were designed that mapped near Sm1. BLAST delineated the syntenic intervals in B. distachyon and rice using gene-based SNPs as query sequences. The Sm1 region in wheat was inverted relative to B. distachyon and rice, which suggests a chromosomal rearrangement within the Triticeae lineage. Seven SNPs were tested on a collection of wheat lines known to carry Sm1 and not to carry Sm1. Sm1-flanking SNPs were identified that were useful for predicting the presence or absence of Sm1 based upon haplotype. These SNPs will be a major improvement for MAS of Sm1 in wheat breeding programs.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Polimorfismo de Nucleotídeo Único , Sintenia , Triticum/genética , Animais , Brachypodium/genética , Chironomidae , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Haplótipos , Oryza/genética , Fenótipo
18.
Theor Appl Genet ; 128(2): 247-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433497

RESUMO

KEY MESSAGE: Genetic analysis and genome mapping of a major seedling oat crown rust resistance gene, designated PcKM, are described. The chromosomal location of the PcKM gene was identified and linked markers were validated. Crown rust (Puccinia coronata Corda f. sp. avenae Eriks) is the most important foliar disease of oats and can cause considerable yield loss in the absence of appropriate management practices. Utilization of novel resistant genes is the most effective, economic and environmentally sound approach to control the disease. Crown rust resistance present in the cultivar 'Morton' was evaluated in a population developed from the cross OT3019 × 'Morton' to elucidate the genetic basis of resistance. Crown rust reaction evaluated in field nurseries and greenhouse tests demonstrated that resistance provided by 'Morton' was controlled by a single gene, temporarily designated as PcKM. The gene was initially linked to a random amplified polymorphic DNA band and subsequently converted into a sequence characterized amplified region (SCAR) marker. Genotyping with the PcKM SCAR on the 'Kanota' × 'Ogle' population, used to create the first oat chromosome-anchored linkage map, placed the PcKM gene on chromosome 12D. Consensus map markers present in the same region as the PcKM SCAR were tested on the OT3019 × 'Morton' population and two additional phenotyped populations segregating for PcKM to identify other markers useful for marker-assisted selection. Three markers were perfectly linked to the PcKM phenotype from which TaqMan and KBioscience competitive allele-specific PCR assays were developed and validated on a set of 25 oat lines. The assays correctly identified PcKM carriers. The markers developed in this study will facilitate fine mapping of the PcKM gene and simplify selection for this crown rust resistance.


Assuntos
Avena/genética , Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Avena/microbiologia , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Dados de Sequência Molecular , Fenótipo , Doenças das Plantas/microbiologia
19.
BMC Plant Biol ; 14: 340, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25432597

RESUMO

BACKGROUND: Pre-harvest sprouting (PHS) of wheat grain leads to a reduction in grain yield and quality. The availability of markers for marker-assisted selection (MAS) of PHS resistance will serve to enhance breeding selection and advancement of lines for cultivar development. The aim of this study was to identify candidate regions and develop molecular markers for PHS resistance in wheat. This was achieved via high density mapping of single nucleotide polymorphism (SNP) markers from an Illumina 90 K Infinium Custom Beadchip in a doubled haploid (DH) population derived from a RL4452/'AC Domain' cross and subsequent detection of quantitative trait loci (QTL) for PHS related traits (falling number [FN], germination index [GI] and sprouting index [SI]). SNP marker sequences flanking QTL were used to locate colinear regions in Brachypodium and rice, and identify genic markers associated with PHS resistance that can be utilized for MAS in wheat. RESULTS: A linkage map spanning 2569.4 cM was constructed with a total of 12,201 SNP, simple sequence repeat (SSR), diversity arrays technology (DArT) and expressed sequence tag (EST) markers. QTL analyses using Multiple Interval Mapping (MIM) identified four QTL for PHS resistance traits on chromosomes 3B, 4A, 7B and 7D. Sequences of SNPs flanking these QTL were subject to a BLASTN search on the International Wheat Genome Sequencing Consortium (IWGSC) database (http://wheat-urgi.versailles.inra.fr/Seq-Repository). Best survey sequence hits were subject to a BLASTN search on Gramene (www.gramene.org) against both Brachypodium and rice databases, and candidate genes and regions for PHS resistance were identified. A total of 18 SNP flanking sequences on chromosomes 3B, 4A, 7B and 7D were converted to KASP markers and validated with matching genotype calls of Infinium SNP data. CONCLUSIONS: Our study identified candidate genes involved in abscissic acid (ABA) and gibberellin (GA) metabolism, and flowering time in four genomic regions of Brachypodium and rice respectively, in addition to 18 KASP markers for PHS resistance in wheat. These markers can be deployed in future genetic studies of PHS resistance and might also be useful in the evaluation of PHS in germplasm and breeding material.


Assuntos
Marcadores Genéticos , Germinação/genética , Proteínas de Plantas/genética , Triticum/fisiologia , Brachypodium/genética , Brachypodium/fisiologia , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Repetições de Microssatélites , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Triticum/genética
20.
BMC Plant Biol ; 14: 250, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25260759

RESUMO

BACKGROUND: Crown rust, caused by Puccinia coronata f. sp. avenae, is the most important disease of oat worldwide. Adult plant resistance (APR), based upon partial resistance, has proven to be a durable rust management strategy in other cereal rust pathosystems. The crown rust APR in the oat line MN841801 has been effective for more than 30 years. The genetic basis of this APR was studied under field conditions in three recombinant inbred line (RIL) populations: 1) AC Assiniboia/MN841801, 2) AC Medallion/MN841801, and 3) Makuru/MN841801. The populations were evaluated for crown rust resistance with the crown rust isolate CR251 (race BRBB) in multiple environments. The 6 K oat and 90 K wheat Illumina Infinium single nucleotide polymorphism (SNP) arrays were used for genotyping the AC Assiniboia/MN841801 population. KASP assays were designed for selected SNPs and genotyped on the other two populations. RESULTS: This study reports a high density genetic linkage map constructed with oat and wheat SNP markers in the AC Assiniboia/MN841801 RIL population. Most wheat SNPs were monomorphic in the oat population. However the polymorphic wheat SNPs could be scored accurately and integrated well into the linkage map. A major quantitative trait locus (QTL) on oat chromosome 14D, designated QPc.crc-14D, explained up to 76% of the APR phenotypic variance. This QTL is flanked by two SNP markers, GMI_GBS_90753 and GMI_ES14_c1439_83. QPc.crc-14D was validated in the populations AC Medallion/MN841801 and Makuru/MN841801. CONCLUSIONS: We report the first APR QTL in oat with a large and consistent effect. QPc.crc-14D was statistically significant in all environments tested in each of the three oat populations. QPc.crc-14D is a suitable candidate for use in marker-assisted breeding and also an excellent target for map-based cloning. This is also the first study to use the 90 K wheat Infinium SNP array on oat for marker development and comparative mapping. The Infinium SNP array is a useful tool for saturating oat maps with markers. Synteny with wheat suggests that QPc.crc-14D is orthologous with the stripe rust APR gene Yr16 in wheat.


Assuntos
Avena/genética , Resistência à Doença/genética , Locos de Características Quantitativas/genética , Genótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA