Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2301456120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695907

RESUMO

The Mott metal-insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS2. We find that i) on approaching Mott localization, the quasiparticle mass is strongly enhanced, whereas the Fermi surface remains essentially unchanged; ii) the quasiparticle mass closely follows the divergent form predicted theoretically, establishing charge carrier slowdown as the driver for the metal-insulator transition; iii) this mass divergence is truncated by the metal-insulator transition, placing the Mott critical point inside the insulating section of the phase diagram. The inaccessibility of the Mott critical point in NiS2 parallels findings at the threshold of ferromagnetism in clean metallic systems, in which criticality at low temperature is almost universally interrupted by first-order transitions or novel emergent phases such as incommensurate magnetic order or unconventional superconductivity.

2.
Proc Natl Acad Sci U S A ; 119(43): e2200405119, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256805

RESUMO

The magnetotransport behavior inside the nematic phase of bulk FeSe reveals unusual multiband effects that cannot be reconciled with a simple two-band approximation proposed by surface-sensitive spectroscopic probes. In order to understand the role played by the multiband electronic structure and the degree of two-dimensionality, we have investigated the electronic properties of exfoliated flakes of FeSe by reducing their thickness. Based on magnetotransport and Hall resistivity measurements, we assess the mobility spectrum that suggests an unusual asymmetry between the mobilities of the electrons and holes, with the electron carriers becoming localized inside the nematic phase. Quantum oscillations in magnetic fields up to 38 T indicate the presence of a hole-like quasiparticle with a lighter effective mass and a quantum scattering time three times shorter, as compared with bulk FeSe. The observed localization of negative charge carriers by reducing dimensionality can be driven by orbitally dependent correlation effects, enhanced interband spin fluctuations, or a Lifshitz-like transition, which affect mainly the electron bands. The electronic localization leads to a fragile two-dimensional superconductivity in thin flakes of FeSe, in contrast to the two-dimensional high-[Formula: see text] induced with electron doping via dosing or using a suitable interface.

3.
Phys Rev Lett ; 129(4): 046402, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939001

RESUMO

Interaction-enhanced carrier masses are central to the phenomenology of iron-based superconductors. Quantum oscillation measurements in the new unconventional superconductor YFe_{2}Ge_{2} resolve all four Fermi surface pockets expected from band structure calculations, which predict an electron pocket in the Brillouin zone corner and three hole pockets enveloping the centers of the top and bottom of the Brillouin zone. Carrier masses reach up to 20 times the bare electron mass and are among the highest ever observed in any iron-based material, accounting for the enhanced heat capacity Sommerfeld coefficient ≃100 mJ/mol K^{2}. Mass renormalization is uniform across reciprocal space, suggesting predominantly local correlations, as in the Hund's metal scenario.

4.
Proc Natl Acad Sci U S A ; 115(37): 9140-9144, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30154165

RESUMO

Topological materials ranging from topological insulators to Weyl and Dirac semimetals form one of the most exciting current fields in condensed-matter research. Many half-Heusler compounds, RPtBi (R = rare earth), have been theoretically predicted to be topological semimetals. Among various topological attributes envisaged in RPtBi, topological surface states, chiral anomaly, and planar Hall effect have been observed experimentally. Here, we report an unusual intrinsic anomalous Hall effect (AHE) in the antiferromagnetic Heusler Weyl semimetal compounds GdPtBi and NdPtBi that is observed over a wide temperature range. In particular, GdPtBi exhibits an anomalous Hall conductivity of up to 60 Ω-1⋅cm-1 and an anomalous Hall angle as large as 23%. Muon spin-resonance (µSR) studies of GdPtBi indicate a sharp antiferromagnetic transition (TN) at 9 K without any noticeable magnetic correlations above TN Our studies indicate that Weyl points in these half-Heuslers are induced by a magnetic field via exchange splitting of the electronic bands at or near the Fermi energy, which is the source of the chiral anomaly and the AHE.

5.
Nat Commun ; 13(1): 5729, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175415

RESUMO

It is becoming increasingly clear that breakthrough in quantum applications necessitates materials innovation. In high demand are conductors with robust topological states that can be manipulated at will. This is what we demonstrate in the present work. We discover that the pronounced topological response of a strongly correlated "Weyl-Kondo" semimetal can be genuinely manipulated-and ultimately fully suppressed-by magnetic fields. We understand this behavior as a Zeeman-driven motion of Weyl nodes in momentum space, up to the point where the nodes meet and annihilate in a topological quantum phase transition. The topologically trivial but correlated background remains unaffected across this transition, as is shown by our investigations up to much larger fields. Our work lays the ground for systematic explorations of electronic topology, and boosts the prospect for topological quantum devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA