Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gend Med ; 5 Suppl A: S46-64, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18395683

RESUMO

BACKGROUND: Sex hormones play a significant role in human physiology. Estrogen may have protective effects in the cardiovascular system, as evidenced by the decreased incidence of cardiovascular disease (CVD) in premenopausal compared with postmenopausal women. OBJECTIVE: This review highlights the acute and long-term effects of sex hormones on the vascular endothelium and vascular smooth muscle (VSM) in adults. Changes in the sex hormone mix, their receptors, and their effects on vascular function in hypertension and aging are also discussed. METHODS: Literature collected from the National Centers for Biotechnology Information as identified by a PubMed database search, as well as our experimental work, was used to highlight current knowledge regarding vascular responses to sex hormones in hypertension and in aging. RESULTS: Experiments in adult female animals have shown that estrogen induces endothelium-dependent vascular relaxation via the nitric oxide (NO), prostacyclin, and hyperpolarization pathways. Also, surface membrane estrogen receptors (ERs) decrease intracellular free Ca2+ concentration and perhaps protein kinase C-dependent VSM contraction. However, clinical trials such as the Heart and Estrogen/progestin Replacement Study (HERS), HERS-II, and the Women's Health Initiative did not support the experimental findings and demonstrated adverse cardiovascular events of hormone therapy (HT) in aging women. The lack of vascular benefits of HT may be related to the hormone used, the ER, or the patient's cardiovascular condition or age. Experiments on vascular strips from aging (16-month-old) female spontaneously hypertensive rats have shown reduced ER-mediated NO production from endothelial cells and decreased inhibitory effects of estrogen on Ca2+ entry mechanisms of VSM contraction. The age-related decrease in ER-mediated vascular relaxation may explain the decreased effectiveness of HT on CVD in aging women. CONCLUSIONS: New HT strategies should further examine the benefits of natural estrogens and phytoestrogens. Transdermal estrogen may be more effective than the oral form, and specific ER modulators may maximize the vascular benefits and reduce the risk of invasive breast cancer. Variants of vascular ERs should be screened for genetic polymorphisms and postmenopausal decrease in the amount of downstream signaling mechanisms. HT may be more effective during the menopausal transition than in late menopause. Progesterone, testosterone, or their specific modulators may be combined with estrogen to provide alternative HT strategies. Thus, HT type, dose, route of administration, and timing should be customized, depending on the patient's cardiovascular condition and age, thereby enhancing the vascular benefits of HT in aging women.


Assuntos
Envelhecimento/fisiologia , Endotélio Vascular/fisiologia , Estrogênios/fisiologia , Hipertensão/fisiopatologia , Animais , Cálcio/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Estradiol/análogos & derivados , Estradiol/urina , Feminino , Humanos , Contração Muscular/fisiologia , Óxido Nítrico/fisiologia , Proteína Quinase C/fisiologia , Receptores de Estrogênio/fisiologia
2.
Drug Alcohol Depend ; 153: 369-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048642

RESUMO

BACKGROUND: The nucleus accumbens (NAc) plays a key role in brain reward processes including drug seeking and reinstatement. Several anatomical, behavioral, and neurochemical studies discriminate between the limbic-associated shell and the motor-associated core regions. Less studied is the fact that the shell can be further subdivided into a dorsomedial shell (NAcDMS) and an intermediate zone (NAcINT) based on differential expression of transient c-Fos and long-acting immediate-early gene ΔFosB upon cocaine sensitization. These disparate expression patterns suggest that NAc shell subregions may play distinct roles in reward-seeking behavior. In this study, we examined potential differences in the contributions of the NAcDMS and the NAcINT to reinstatement of reward-seeking behavior after extinction. METHODS: Rats were trained to intravenously self-administer cocaine, extinguished, and subjected to a reinstatement test session consisting of an intracranial microinfusion of either amphetamine or vehicle targeted to the NAcDMS or the NAcINT. RESULTS: Small amphetamine microinfusions targeted to the NAcDMS resulted in statistically significant reinstatement of lever pressing, whereas no significant difference was observed for microinfusions targeted to the NAcINT. No significant difference was found for vehicle microinfusions in either case. CONCLUSION: These results suggest heterogeneity in the behavioral relevance of NAc shell subregions, a possibility that can be tested in specific neuronal populations in the future with recently developed techniques including optogenetics.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Anfetamina/administração & dosagem , Anfetamina/farmacologia , Animais , Cocaína/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Microinjeções , Núcleo Accumbens/anatomia & histologia , Ratos , Ratos Sprague-Dawley , Autoadministração
3.
J Huntingtons Dis ; 3(2): 145-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062858

RESUMO

BACKGROUND: Huntington's disease (HD) is characterized not only by severe motor deficits but also by early cognitive dysfunction that significantly increases the burden of the disease for patients and caregivers. Considerable efforts have concentrated, therefore, on the assessment of cognitive deficits in some HD mouse models. However, many of these models that exhibit cognitive deficits also have contemporaneous serious motor deficits, confounding interpretation of cognitive decline. OBJECTIVE: The BACHD and zQ175 mouse models present a more slowly progressing disease phenotype in both motor and cognitive domains, and might therefore offer a better opportunity to measure cognitive decline over a longer timeframe; such models could be useful in screening therapeutic compounds. In order to better define the cognitive impairments evident in BACHD and zQ175 HD mice, both were tested in an instrumental touchscreen visual discrimination assay designed to assess discrimination learning and cognitive flexibility. METHODS: BACHD and zQ175 mice, as well as their WT controls were tested for their ability to discriminate two complex visual stimuli. Following this discrimination phase, the reinforcement contingencies were reversed and the previously incorrect stimulus became the correct stimulus. In a final, third phase of testing, two novel stimuli were introduced and mice were required to undergo a second round of discrimination testing with these stimuli. RESULTS: Our results show that learning during the discrimination phase was similar between the WT and BACHD mice. In contrast, the zQ175 at 26 weeks of age showed decreased accuracy over the last 10 days of discrimination, compared to WT controls. During subsequent reversal and novel stimuli phases, both BACHD and zQ175 mice exhibited significant deficits compared to WT controls. CONCLUSIONS: Our results suggest that the BACHD, and for the first time, zQ175 HD models exhibit cognitive inflexibility and psychomotor slowing, a phenotype that is consistent with cognitive symptoms described in HD patients.


Assuntos
Transtornos Cognitivos/genética , Modelos Animais de Doenças , Doença de Huntington/genética , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Animais , Comportamento Animal/fisiologia , Transtornos Cognitivos/fisiopatologia , Computadores , Feminino , Técnicas de Introdução de Genes , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Desempenho Psicomotor/fisiologia , Tempo de Reação/genética , Reversão de Aprendizagem/fisiologia , Percepção Visual/fisiologia
4.
PLoS One ; 9(6): e99520, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955833

RESUMO

Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene. Tissue transglutaminase 2 (TG2), a multi-functional enzyme, was found to be increased both in HD patients and in mouse models of the disease. Furthermore, beneficial effects have been reported from the genetic ablation of TG2 in R6/2 and R6/1 mouse lines. To further evaluate the validity of this target for the treatment of HD, we examined the effects of TG2 deletion in two genetic mouse models of HD: R6/2 CAG 240 and zQ175 knock in (KI). Contrary to previous reports, under rigorous experimental conditions we found that TG2 ablation had no effect on either motor or cognitive deficits, or on the weight loss. In addition, under optimal husbandry conditions, TG2 ablation did not extend R6/2 lifespan. Moreover, TG2 deletion did not change the huntingtin aggregate load in cortex or striatum and did not decrease the brain atrophy observed in either mouse line. Finally, no amelioration of the dysregulation of striatal and cortical gene markers was detected. We conclude that TG2 is not a valid therapeutic target for the treatment of HD.


Assuntos
Proteínas de Ligação ao GTP/genética , Deleção de Genes , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Transglutaminases/genética , Animais , Atrofia , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/complicações , Cruzamentos Genéticos , Discriminação Psicológica , Modelos Animais de Doenças , Feminino , Genótipo , Doença de Huntington/complicações , Ligantes , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Fenótipo , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Redução de Peso
5.
PLoS Curr ; 52013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24042107

RESUMO

The genome of the Bacterial Artificial Chromosome (BAC) transgenic mouse model of Huntington's Disease (BAC HD) contains the 170 kb human HTT locus modified by the addition of exon 1 with 97 mixed CAA-CAG repeats. BAC HD mice present robust behavioral deficits in both the open field and the accelerating rotarod tests, two standard behavioral assays of motor function. BAC HD mice, however, also typically present significantly increased body weights relative to wildtype littermate controls (WT) which potentially confounds the interpretation of any motor deficits associated directly with the effects of mutant huntingtin. In order to evaluate this possible confound of body weight, we directly compared the performance of BAC HD and WT female mice under food restricted versus free feeding conditions in both the open field and rotarod tasks to test the hypothesis that some of the motor deficits observed in this HTT-transgenic mouse line results solely from increased body weight. Our results suggest that the rotarod deficit exhibited by BAC HD mice is modulated by both body weight and non-body weight factors resulting from overexpression of full length mutant Htt. When body weights of WT and BAC HD transgenic mice were normalized using restricted feeding, the deficits exhibited by BAC HD mice on the rotarod task were less marked, but were still significant. Since the rotarod deficit between WT and BAC HD mice is attenuated when body weight is normalized by food restriction, utilization of this task in BAC HD mice during pre-clinical evaluation must be powered accordingly and results carefully considered as therapeutic benefit can result from decreased overall body weight and or motoric improvement that may not be related to body mass. Furthermore, after controlling for body weight differences, the hypoactive phenotype displayed by ad libitum fed BAC HD mice in the open field assay was not observed in the BAC HD mice undergoing food restriction. These findings suggest that assessment of spontaneous locomotor activity, as measured in the open field test, may not be the appropriate behavioral endpoint to evaluate the BAC HD mouse during preclinical evaluation since it appears that the apparent hypoactive phenotype in this model is driven primarily by body weight differences.

6.
PLoS One ; 7(12): e49838, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284626

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Huntington/genética , Animais , Comportamento Animal/efeitos da radiação , Peso Corporal/genética , Cognição/fisiologia , Escuridão , Feminino , Marcadores Genéticos/genética , Força da Mão/fisiologia , Heterozigoto , Homozigoto , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Teste de Desempenho do Rota-Rod , Análise de Sobrevida , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA