Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(9): e1010832, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121863

RESUMO

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals.


Assuntos
COVID-19 , Proteínas Monoméricas de Ligação ao GTP , Pró-Fármacos , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Antivirais/farmacologia , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Tioguanina , Vírion/metabolismo
2.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33762409

RESUMO

Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.

3.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321802

RESUMO

Influenza A virus (IAV) increases the presentation of class I human leukocyte antigen (HLA) proteins that limit antiviral responses mediated by natural killer (NK) cells, but molecular mechanisms for these processes have not yet been fully elucidated. We observed that infection with A/Fort Monmouth/1/1947(H1N1) IAV significantly increased the presentation of HLA-B, -C, and -E on lung epithelial cells. Virus entry was not sufficient to induce HLA upregulation because UV-inactivated virus had no effect. Aberrant internally deleted viral RNAs (vRNAs) known as mini viral RNAs (mvRNAs) and defective interfering RNAs (DI RNAs) expressed from an IAV minireplicon were sufficient for inducing HLA upregulation. These defective RNAs bind to retinoic acid-inducible gene I (RIG-I) and initiate mitochondrial antiviral signaling (MAVS) protein-dependent antiviral interferon (IFN) responses. Indeed, MAVS was required for HLA upregulation in response to IAV infection or ectopic mvRNA/DI RNA expression. The effect was partially due to paracrine signaling, as we observed that IAV infection or mvRNA/DI RNA-expression stimulated production of IFN-ß and IFN-λ1 and conditioned media from these cells elicited a modest increase in HLA surface levels in naive epithelial cells. HLA upregulation in response to aberrant viral RNAs could be prevented by the Janus kinase (JAK) inhibitor ruxolitinib. While HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein; we determined that NS1 limits cell-intrinsic and paracrine mechanisms of HLA upregulation. Taken together, our findings indicate that aberrant IAV RNAs stimulate HLA presentation, which may aid viral evasion of innate immunity.IMPORTANCE Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell.


Assuntos
Genes MHC Classe I/genética , Antígenos HLA/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína DEAD-box 58/genética , Bases de Dados Genéticas , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Influenza Humana/genética , Células Matadoras Naturais/metabolismo , Pulmão/virologia , RNA Viral/genética , Transdução de Sinais , Ativação Transcricional , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
4.
PLoS Pathog ; 15(12): e1008185, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31790507

RESUMO

Herpesviruses usurp host cell protein synthesis machinery to convert viral mRNAs into proteins, and the endoplasmic reticulum (ER) to ensure proper folding, post-translational modification and trafficking of secreted and transmembrane viral proteins. Overloading ER folding capacity activates the unfolded protein response (UPR), whereby sensor proteins ATF6, PERK and IRE1 initiate a stress-mitigating transcription program that accelerates catabolism of misfolded proteins while increasing ER folding capacity. Kaposi's sarcoma-associated herpesvirus (KSHV) can be reactivated from latency by chemical induction of ER stress, which causes accumulation of the XBP1s transcription factor that transactivates the viral RTA lytic switch gene. The presence of XBP1s-responsive elements in the RTA promoter suggests that KSHV evolved a mechanism to respond to ER stress. Here, we report that ATF6, PERK and IRE1 were activated upon reactivation from latency and required for efficient KSHV lytic replication; genetic or pharmacologic inhibition of each UPR sensor diminished virion production. Despite UPR sensor activation during KSHV lytic replication, downstream UPR transcriptional responses were restricted; 1) ATF6 was cleaved to activate the ATF6(N) transcription factor but ATF6(N)-responsive genes were not transcribed; 2) PERK phosphorylated eIF2α but ATF4 did not accumulate; 3) IRE1 caused XBP1 mRNA splicing, but XBP1s protein did not accumulate and XBP1s-responsive genes were not transcribed. Ectopic expression of the KSHV host shutoff protein SOX did not affect UPR gene expression, suggesting that alternative viral mechanisms likely mediate UPR suppression during lytic replication. Complementation of XBP1s deficiency during KSHV lytic replication inhibited virion production in a dose-dependent manner in iSLK.219 cells but not in TREx-BCBL1-RTA cells. However, genetically distinct KSHV virions harvested from these two cell lines were equally susceptible to XBP1s restriction following infection of naïve iSLK cells. This suggests that cell-intrinsic properties of BCBL1 cells may circumvent the antiviral effect of ectopic XBP1s expression. Taken together, these findings indicate that while XBP1s plays an important role in reactivation from latency, it can inhibit virus replication at a later step, which the virus overcomes by preventing its synthesis. These findings suggest that KSHV hijacks UPR sensors to promote efficient viral replication while sustaining ER stress.


Assuntos
Herpesvirus Humano 8/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/fisiologia , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Infecções por Herpesviridae/virologia , Humanos
5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375594

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.IMPORTANCE All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.


Assuntos
Autofagia , Herpesvirus Humano 8/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sarcoma de Kaposi/virologia , Ativação Viral , Autofagia/efeitos dos fármacos , Ácido Butírico/farmacologia , Linhagem Celular , Fator de Iniciação 4F em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sirolimo/farmacologia , Transativadores/metabolismo , Vírion/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31611276

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is a common cause of nosocomial infections. The molecular mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Early growth response 1 (Egr-1) is a zinc-finger transcription factor that controls inflammatory responses. Here, we characterized the role of Egr-1 in host defense against P. aeruginosa infection in a mouse model of acute bacterial pneumonia. Egr-1 expression was rapidly and transiently induced in response to P. aeruginosa infection. Egr-1-deficient mice displayed decreased mortality, reduced levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-1ß [IL-1ß], IL-6, IL-12, and IL-17), and enhanced bacterial clearance from the lung. Egr-1 deficiency caused diminished NF-κB activation in P. aeruginosa-infected macrophages independently of IκBα phosphorylation. A physical interaction between Egr-1 and NF-κB p65 was found in P. aeruginosa-infected macrophages, suggesting that Egr-1 could be required for assembly of heterodimeric transcription factors that direct synthesis of inflammatory mediators. Interestingly, Egr-1 deficiency had no impact on neutrophil recruitment in vivo due to its differential effects on chemokine production, which included diminished accumulation of KC (CXCL1), MIP2 (CXCL2), and IP-10 (CXCL10) and increased accumulation of LIX (CXCL5). Importantly, Egr-1-deficient macrophages and neutrophils displayed significant increases in nitric oxide production and bacterial killing ability that correlated with enhanced bacterial clearance in Egr-1-deficient mice. Together, these findings suggest that Egr-1 plays a detrimental role in host defense against P. aeruginosa acute lung infection by promoting systemic inflammation and negatively regulating the nitric oxide production that normally assists with bacterial clearance.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Citocinas/análise , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/deficiência , Fatores Imunológicos/análise , Camundongos , Análise de Sobrevida
7.
PLoS Pathog ; 12(2): e1005427, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26849127

RESUMO

Influenza A viruses (IAVs) inhibit host gene expression by a process known as host shutoff. Host shutoff limits host innate immune responses and may also redirect the translation apparatus to the production of viral proteins. Multiple IAV proteins regulate host shutoff, including PA-X, a ribonuclease that remains incompletely characterized. We report that PA-X selectively targets host RNA polymerase II (Pol II) transcribed mRNAs, while sparing products of Pol I and Pol III. Interestingly, we show that PA-X can also target Pol II-transcribed RNAs in the nucleus, including non-coding RNAs that are not destined to be translated, and reporter transcripts with RNA hairpin structures that block ribosome loading. Transcript degradation likely occurs in the nucleus, as PA-X is enriched in the nucleus and its nuclear localization correlates with reduction in target RNA levels. Complete degradation of host mRNAs following PA-X-mediated endonucleolytic cleavage is dependent on the host 5'->3'-exonuclease Xrn1. IAV mRNAs are structurally similar to host mRNAs, but are synthesized and modified at the 3' end by the action of the viral RNA-dependent RNA polymerase complex. Infection of cells with wild-type IAV or a recombinant PA-X-deficient virus revealed that IAV mRNAs resist PA-X-mediated degradation during infection. At the same time, loss of PA-X resulted in changes in the synthesis of select viral mRNAs and a decrease in viral protein accumulation. Collectively, these results significantly advance our understanding of IAV host shutoff, and suggest that the PA-X causes selective degradation of host mRNAs by discriminating some aspect of Pol II-dependent RNA biogenesis in the nucleus.


Assuntos
Vírus da Influenza A/fisiologia , RNA Polimerase II/genética , Proteínas Repressoras/genética , Transcrição Gênica/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , RNA Polimerase Dependente de RNA/metabolismo
8.
PLoS Pathog ; 11(1): e1004597, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569678

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5' to 3' decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Herpesvirus Humano 8/fisiologia , Estabilidade de RNA/fisiologia , Elementos Ricos em Adenilato e Uridilato/genética , Células Cultivadas , Células HEK293 , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Proteínas de Choque Térmico , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares , Proteínas Serina-Treonina Quinases/metabolismo , Processamento Pós-Transcricional do RNA , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
9.
J Virol ; 89(13): 6528-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878098

RESUMO

Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Vírus da Influenza A/crescimento & desenvolvimento , Tempo
10.
PLoS Pathog ; 10(7): e1004217, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010204

RESUMO

Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5' caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Biossíntese de Proteínas/imunologia , Proteínas Repressoras/imunologia , Proteínas não Estruturais Virais/imunologia , Replicação Viral/fisiologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/imunologia , Células HeLa , Humanos , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética
11.
J Immunol ; 190(10): 5178-86, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23589609

RESUMO

Respiratory tract infection with Pseudomonas aeruginosa is a common cause of hospitalization in immune-compromised individuals. However, the molecular mechanisms involved in the immune response to P. aeruginosa lung infection remain incompletely defined. In this study, we demonstrate that the regulator of calcineurin 1 (RCAN1) is a central negative regulator of inflammation in a mouse model of acute bacterial pneumonia using the opportunistic bacterial pathogen P. aeruginosa. RCAN1-deficient mice display greatly increased mortality following P. aeruginosa lung infection despite enhanced neutrophil recruitment and bacterial clearance. This mortality is associated with higher systemic levels of proinflammatory cytokines in RCAN1-deficient animals. These aberrant inflammatory responses coincide with increased transcriptional activity of proinflammatory RCAN1-target proteins NFAT and NF-κB. In addition, we reveal a novel regulatory role for RCAN1 in the ERK/STAT3 pathway both in vitro and in vivo, suggesting that aberrant STAT3 activity may significantly contribute to delayed resolution of inflammatory responses in our model. Together, these findings demonstrate that RCAN1 is a potent negative regulator of inflammation during respiratory tract infections.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Carga Bacteriana , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio , Citocinas/sangue , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/deficiência , Proteínas Musculares/genética , NF-kappa B/biossíntese , NF-kappa B/genética , Fatores de Transcrição NFATC/biossíntese , Fatores de Transcrição NFATC/genética , Infiltração de Neutrófilos , Neutrófilos/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Fator de Transcrição STAT3/metabolismo
12.
Biochem Biophys Res Commun ; 451(2): 165-70, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25058460

RESUMO

Natural Killer (NK) cells are highly mobile, specialized sub-populations of lymphocytic cells that survey their host to identify and eliminate infected or tumor cells. They are one of the key players in innate immunity and do not need prior activation through antigen recognition to deliver cytotoxic packages and release messenger chemicals to recruit immune cells. Cytohesin associated scaffolding protein (CASP) is a highly expressed lymphocyte adaptor protein that forms complexes with vesicles and sorting proteins including SNX27 and Cytohesin-1. In this study we show that by using stably integrated shRNA, CASP has a direct role in the secretion of IFN-γ, and NK cell motility and ability to kill tumor cells. CASP polarizes to the leading edge of migrating NK cells, and to the immunological synapse when engaged with tumor cells. However, CASP is not associated with cytotoxic granule mediated killing. CASP is a multi-faceted protein, which has a very diverse role in NK cell specific immune functions.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Degranulação Celular , Linhagem Celular , Movimento Celular/imunologia , Movimento Celular/fisiologia , Polaridade Celular/imunologia , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Citotoxicidade Imunológica , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Sinapses Imunológicas/fisiologia , Células K562 , Pseudópodes/imunologia , Pseudópodes/fisiologia , RNA Interferente Pequeno/genética , Receptores CXCR4/fisiologia , Fatores de Transcrição
13.
J Virol ; 86(16): 8859-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696654

RESUMO

During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3' untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells.


Assuntos
Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Estabilidade de RNA , Receptores de Quimiocinas/metabolismo , Replicação Viral , Expressão Gênica , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases
14.
FASEB J ; 26(4): 1629-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22202676

RESUMO

An important component of the mammalian stress response is the reprogramming of translation. A variety of stresses trigger abrupt polysome disassembly and the accumulation of stalled translation preinitiation complexes. These complexes nucleate cytoplasmic stress granules (SGs), sites of mRNA triage in which mRNAs from disassembling polysomes are sorted and the fates of individual transcripts are determined. Here, we demonstrate that influenza A virus (IAV) actively suppresses SG formation during infection, thereby allowing translation of viral mRNAs. Complete inhibition of SG formation is dependent on the function of the viral nonstructural protein 1 (NS1); at late times postinfection, cells infected with NS1-mutant viruses formed SGs in a double-stranded RNA-activated protein kinase (PKR)-dependent fashion. In these cells, SG formation correlated with inhibited viral protein synthesis. Together, these experiments demonstrate the antiviral potential of SGs and reveal a viral countermeasure that limits SG formation.


Assuntos
Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Vírus da Influenza A/metabolismo , Estresse Fisiológico , Animais , Células HeLa , Humanos , Vírus da Influenza A/genética , Interferon Tipo I/antagonistas & inibidores , Camundongos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , eIF-2 Quinase/metabolismo
15.
Antiviral Res ; 220: 105758, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008194

RESUMO

Coronavirus (CoV) replication requires efficient cleavage of viral polyproteins into an array of non-structural proteins involved in viral replication, organelle formation, viral RNA synthesis, and host shutoff. Human CoVs (HCoVs) encode two viral cysteine proteases, main protease (Mpro) and papain-like protease (PLpro), that mediate polyprotein cleavage. Using a structure-guided approach, a phenothiazine urea derivative that inhibits both SARS-CoV-2 Mpro and PLpro protease activity was identified. In silico docking studies also predicted the binding of the phenothiazine urea to the active sites of structurally similar Mpro and PLpro proteases from distantly related alphacoronavirus, HCoV-229 E (229 E), and the betacoronavirus, HCoV-OC43 (OC43). The lead phenothiazine urea derivative displayed broad antiviral activity against all three HCoVs tested in cellulo. It was further demonstrated that the compound inhibited 229 E and OC43 at an early stage of viral replication, with diminished formation of viral replication organelles, and the RNAs that are made within them, as expected following viral protease inhibition. These observations suggest that the phenothiazine urea derivative readily inhibits viral replication and may broadly inhibit proteases of diverse coronaviruses.


Assuntos
Peptídeo Hidrolases , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Papaína/química , Proteases Virais , Fenotiazinas/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química
16.
J Virol ; 85(9): 4386-98, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21307190

RESUMO

Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues.


Assuntos
Antivirais/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicosaminoglicanos/antagonistas & inibidores , Herpesvirus Humano 1/efeitos dos fármacos , Taninos Hidrolisáveis/metabolismo , Proteínas Virais/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Benzopiranos/isolamento & purificação , Benzopiranos/metabolismo , Linhagem Celular , Chlorocebus aethiops , Glucosídeos/isolamento & purificação , Glucosídeos/metabolismo , Herpesvirus Humano 1/fisiologia , Humanos , Taninos Hidrolisáveis/isolamento & purificação , Testes de Sensibilidade Microbiana , Terminalia/química , Ensaio de Placa Viral , Inativação de Vírus
17.
Methods ; 55(2): 172-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21854851

RESUMO

Early host responses to viral infection rapidly induce an antiviral gene expression program that limits viral replication and recruits sentinel cells of the innate immune system. These responses are mediated by cytokines. The mRNAs that encode cytokines typically harbor destabilizing adenine- and uridine-rich elements (AREs) that direct their constitutive degradation in the cytoplasm. In response to a variety of signals, including viral infection, small pools of cytoplasmic ARE-mRNAs are rapidly stabilized and translated. Thus, mRNA stability plays a key role in antiviral gene expression. Intriguingly, recent studies have identified viral proteins that specifically target ARE-mRNAs for stabilization, suggesting that certain proteins encoded by ARE-mRNAs may be advantageous for infection. Here, we discuss the development of a suite of sensitive and complementary assays to monitor ARE-mRNA turnover. These include luciferase- and destabilized-GFP-based assays that can be adapted for high-throughput screening applications.


Assuntos
Genes Reporter , Interações Hospedeiro-Patógeno , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Northern Blotting/métodos , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Dados de Sequência Molecular , Estabilidade de RNA , Coelhos , Coloração e Rotulagem , Transfecção , Globinas beta/biossíntese , Globinas beta/genética
18.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062314

RESUMO

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Animais , Antivirais/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Emodina/farmacologia , Emodina/efeitos da radiação , Humanos , Luz , Fármacos Fotossensibilizantes/efeitos da radiação , Extratos Vegetais/farmacologia , Extratos Vegetais/efeitos da radiação , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Vírion/efeitos dos fármacos
19.
Viruses ; 12(7)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674309

RESUMO

Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek's disease virus (MDV), Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Vírus Oncogênicos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Deltaretrovirus/genética , Deltaretrovirus/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Mardivirus/genética , Mardivirus/metabolismo , Filogenia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia , Resposta a Proteínas não Dobradas
20.
Cell Death Dis ; 11(11): 989, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203845

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor, and it has a uniformly poor prognosis. Hypoxia is a feature of the GBM microenvironment, and previous work has shown that cancer cells residing in hypoxic regions resist treatment. Hypoxia can trigger the formation of stress granules (SGs), sites of mRNA triage that promote cell survival. A screen of 1120 FDA-approved drugs identified 129 candidates that delayed the dissolution of hypoxia-induced SGs following a return to normoxia. Amongst these candidates, the selective estrogen receptor modulator (SERM) raloxifene delayed SG dissolution in a dose-dependent manner. SG dissolution typically occurs by 15 min post-hypoxia, however pre-treatment of immortalized U251 and U3024 primary GBM cells with raloxifene prevented SG dissolution for up to 2 h. During this raloxifene-induced delay in SG dissolution, translational silencing was sustained, eIF2α remained phosphorylated and mTOR remained inactive. Despite its well-described role as a SERM, raloxifene-mediated delay in SG dissolution was unaffected by co-administration of ß-estradiol, nor did ß-estradiol alone have any effect on SGs. Importantly, the combination of raloxifene and hypoxia resulted in increased numbers of late apoptotic/necrotic cells. Raloxifene and hypoxia also demonstrated a block in late autophagy similar to the known autophagy inhibitor chloroquine (CQ). Genetic disruption of the SG-nucleating proteins G3BP1 and G3BP2 revealed that G3BP1 is required to sustain the raloxifene-mediated delay in SG dissolution. Together, these findings indicate that modulating the stress response can be used to exploit the hypoxic niche of GBM tumors, causing cell death by disrupting pro-survival stress responses and control of protein synthesis.


Assuntos
Antagonistas de Estrogênios/uso terapêutico , Glioblastoma/tratamento farmacológico , Cloridrato de Raloxifeno/uso terapêutico , Morte Celular , Antagonistas de Estrogênios/farmacologia , Humanos , Cloridrato de Raloxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA