RESUMO
Neutrophils play important roles in inflammatory airway diseases. In this study, we assessed whether apolipoprotein A-I modifies neutrophil heterogeneity as part of the mechanism by which it attenuates acute airway inflammation. Neutrophilic airway inflammation was induced by daily intranasal administration of LPS plus house dust mite (LPS+HDM) to Apoa1-/- and Apoa1+/+ mice for 3 d. Single-cell RNA sequencing was performed on cells recovered from bronchoalveolar lavage fluid on day 4. Unsupervised profiling identified 10 clusters of neutrophils in bronchoalveolar lavage fluid from Apoa1-/- and Apoa1+/+ mice. LPS+HDM-challenged Apoa1-/- mice had an increased proportion of the Neu4 neutrophil cluster that expressed S100a8, S100a9, and Mmp8 and had high maturation, aggregation, and TLR4 binding scores. There was also an increase in the Neu6 cluster of immature neutrophils, whereas neutrophil clusters expressing IFN-stimulated genes were decreased. An unsupervised trajectory analysis showed that Neu4 represented a distinct lineage in Apoa1-/- mice. LPS+HDM-challenged Apoa1-/- mice also had an increased proportion of recruited airspace macrophages, which was associated with a reciprocal reduction in resident airspace macrophages. Increased expression of a common set of proinflammatory genes, S100a8, S100a9, and Lcn2, was present in all neutrophils and airspace macrophages from LPS+HDM-challenged Apoa1-/- mice. These findings show that Apoa1-/- mice have increases in specific neutrophil and macrophage clusters in the lung during acute inflammation mediated by LPS+HDM, as well as enhanced expression of a common set of proinflammatory genes. This suggests that modifications in neutrophil and macrophage heterogeneity contribute to the mechanism by which apolipoprotein A-I attenuates acute airway inflammation.
Assuntos
Apolipoproteína A-I , Camundongos Knockout , Neutrófilos , Pneumonia , Animais , Camundongos , Neutrófilos/imunologia , Pneumonia/imunologia , Pneumonia/genética , Apolipoproteína A-I/genética , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/imunologia , Pulmão/patologia , Calgranulina A , Calgranulina BRESUMO
Cell-to-cell expression variation (CEV) is a prevalent feature of even well-defined cell populations, but its functions, particularly at the organismal level, are not well understood. Using single-cell data obtained via high-dimensional flow cytometry of T cells as a model, we introduce an analysis framework for quantifying CEV in primary cell populations and studying its functional associations in human cohorts. Analyses of 840 CEV phenotypes spanning multiple baseline measurements of 14 proteins in 28 T cell subpopulations suggest that the quantitative extent of CEV can exhibit substantial subject-to-subject differences and yet remain stable within healthy individuals over months. We linked CEV to age and disease-associated genetic polymorphisms, thus implicating CEV as a biomarker of aging and disease susceptibility and suggesting that it might play an important role in health and disease. Our dataset, interactive figures, and software for computing CEV with flow cytometry data provide a resource for exploring CEV functions.
Assuntos
Envelhecimento/imunologia , Linfócitos T/imunologia , Estudos de Coortes , Feminino , Citometria de Fluxo , Predisposição Genética para Doença , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.
Assuntos
Adenocarcinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Camundongos , Animais , Células Enterocromafins/metabolismo , Intestino Delgado/patologia , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Intestinais/metabolismo , Tumores Neuroendócrinos/metabolismo , Adenocarcinoma/genéticaRESUMO
Complexities in sample handling, instrument setup and data analysis are barriers to the effective use of flow cytometry to monitor immunological parameters in clinical trials. The novel use of a central laboratory may help mitigate these issues.
Assuntos
Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Ensaios Clínicos como Assunto , Humanos , Manejo de EspécimesRESUMO
BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death in the world. Given the role of immune cells in atherosclerosis development and progression, effective methods for characterizing immune cell populations are needed, particularly among populations disproportionately at risk for CVD. RESULTS: By using a variety of antibodies combined in one staining protocol, we were able to identify granulocyte, lymphocyte, and monocyte sub-populations by CD-antigen expression from 500 µl of whole blood, enabling a more extensive comparison than what is possible with a complete blood count and differential (CBC). The flow cytometry panel was established and tested in a total of 29 healthy men and women. As a proof of principle, these 29 samples were split by their race/ethnicity: African-Americans (AA) (N = 14) and Caucasians (N = 15). We found in accordance with the literature that AA had fewer granulocytes and more lymphocytes when compared to Caucasians, though the proportion of total monocytes was similar in both groups. Several new differences between AA and Caucasians were noted that had not been previously described. For example, AA had a greater proportion of platelet adhesion on non-classical monocytes when compared to Caucasians, a cell-to-cell interaction described as crucially important in CVD. We also examined our flow panel in a clinical population of AA women with known CVD risk factors (N = 20). Several of the flow cytometry parameters that cannot be measured with the CBC displayed correlations with clinical CVD risk markers. For instance, Framingham Risk Score (FRS) calculated for each participant correlated with immune cell platelet aggregates (PA) (e.g. T cell PA ß = 0.59, p = 0.03 or non-classical monocyte PA ß = 0.54, p = 0.02) after adjustment for body mass index (BMI). CONCLUSION: A flow cytometry panel identified differences in granulocytes, monocytes, and lymphocytes between AA and Caucasians which may contribute to increased CVD risk in AA. Moreover, this flow panel identifies immune cell sub-populations and platelet aggregates associated with CVD risk. This flow cytometry panel may serve as an effective method for phenotyping immune cell populations involved in the development and progression of CVD.
Assuntos
Volume Sanguíneo , Doenças Cardiovasculares , Negro ou Afro-Americano , Doenças Cardiovasculares/diagnóstico , Feminino , Granulócitos , Humanos , Masculino , Monócitos , Projetos Piloto , População BrancaRESUMO
BACKGROUND: Low-density lipoprotein receptor-related protein 1 (LRP-1) is a scavenger receptor that regulates adaptive immunity and inflammation. LRP-1 is not known to modulate the pathogenesis of allergic asthma. OBJECTIVE: We sought to assess whether LRP-1 expression by dendritic cells (DCs) modulates adaptive immune responses in patients with house dust mite (HDM)-induced airways disease. METHODS: LRP-1 expression on peripheral blood DCs was quantified by using flow cytometry. The role of LRP-1 in modulating HDM-induced airways disease was assessed in mice with deletion of LRP-1 in CD11c+ cells (Lrp1fl/fl; CD11c-Cre) and by adoptive transfer of HDM-pulsed CD11b+ DCs from Lrp1fl/fl; CD11c-Cre mice to wild-type (WT) mice. RESULTS: Human peripheral blood myeloid DC subsets from patients with eosinophilic asthma have lower LRP-1 expression than cells from healthy nonasthmatic subjects. Similarly, LRP-1 expression by CD11b+ lung DCs was significantly reduced in HDM-challenged WT mice. HDM-challenged Lrp1fl/fl; CD11c-Cre mice have a phenotype of increased eosinophilic airway inflammation, allergic sensitization, TH2 cytokine production, and mucous cell metaplasia. The adoptive transfer of HDM-pulsed LRP-1-deficient CD11b+ DCs into WT mice generated a similar phenotype of enhanced eosinophilic inflammation and allergic sensitization. Furthermore, CD11b+ DCs in the lungs of Lrp1fl/fl; CD11c-Cre mice have an increased ability to take up HDM antigen, whereas bone marrow-derived DCs display enhanced antigen presentation capabilities. CONCLUSION: This identifies a novel role for LRP-1 as a negative regulator of DC-mediated adaptive immune responses in the setting of HDM-induced eosinophilic airway inflammation. Furthermore, the reduced LRP-1 expression by circulating myeloid DCs in patients with eosinophilic asthma suggests a possible role for LRP-1 in modulating type 2-high asthma.
Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Dermatophagoides pteronyssinus/imunologia , Eosinofilia/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Imunidade Adaptativa , Adulto , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Asma/sangue , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Eosinofilia/sangue , Eosinofilia/fisiopatologia , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Masculino , Camundongos Transgênicos , Pessoa de Meia-IdadeRESUMO
Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.
Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Proliferação de Células , Células Enteroendócrinas/citologia , Intestino Delgado/citologia , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Células Enteroendócrinas/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Data analysis in imaging flow cytometry incorporates elements of flow cytometry together with other aspects of morphological analysis of images. A crucial early step in this analysis is the creation of a mask to distinguish the portion of the image upon which further examination of specified features can be performed. Default masks are provided by the manufacturer of the imaging flow cytometer but additional custom masks can be created by the individual user for specific applications. Flawed or inaccurate masks can have a substantial negative impact on the overall analysis of a sample, thus great care must be taken to ensure the accuracy of masks. Here we discuss various types of masks and cite examples of their use. Furthermore we provide our insight for how to approach selecting and assessing the optimal mask for a specific analysis.
Assuntos
Anonimização de Dados , Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Citometria de Fluxo/instrumentação , Humanos , Citometria por Imagem/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , SoftwareRESUMO
T-cell receptors (TCRs) and chimeric antigen receptors recognizing tumor-associated antigens (TAAs) can now be engineered to be expressed on a wide array of immune effectors. Engineered receptors targeting TAAs have most commonly been expressed on mature T cells, however, some have postulated that receptor expression on immune progenitors could yield T cells with enhanced potency. We generated mice (survivin-TCR-transgenic [Sur-TCR-Tg]) expressing a TCR recognizing the immunodominant epitope (Sur20-28) of murine survivin during early stages of thymopoiesis. Spontaneous T-cell acute lymphoblastic leukemia (T-ALL) occurred in 100% of Sur-TCR-Tg mice derived from 3 separate founders. The leukemias expressed the Sur-TCR and signaled in response to the Sur20-28 peptide. In preleukemic mice, we observed increased cycling of double-negative thymocytes expressing the Sur-TCR and increased nuclear translocation of nuclear factor of activated T cells, consistent with TCR signaling induced by survivin expression in the murine thymus. ß2M(-/-) Sur-TCR-Tg mice, which cannot effectively present survivin peptides on class I major histocompatibility complex, had significantly diminished rates of leukemia. We conclude that TCR signaling during the early stages of thymopoiesis mediates an oncogenic signal, and therefore expression of signaling receptors on developing thymocytes with specificity for TAAs expressed in the thymus could pose a risk for neoplasia, independent of insertional mutagenesis.
Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica , Proteínas Inibidoras de Apoptose/fisiologia , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Proteínas Repressoras/fisiologia , Subpopulações de Linfócitos T/imunologia , Timo/imunologia , Animais , Antígenos de Neoplasias/genética , Western Blotting , Moléculas de Adesão Celular/genética , Citometria de Fluxo , Imunofluorescência , Proteínas de Homeodomínio/fisiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Survivina , Timo/citologia , Timo/metabolismo , Células Tumorais CultivadasRESUMO
For sputum analysis, the transfer of inflammatory cells from liquefied sputum samples to a culture medium or buffer solution is a critical step because it removes the inflammatory cells from the presence of residual dithiothreitol (DTT), a reagent that reduces cell viability and interferes with further sputum analyses. In this work, we report an acoustofluidic platform for transferring inflammatory cells using standing surface acoustic waves (SSAW). In particular, we exploit the acoustic radiation force generated from a SSAW field to actively transfer inflammatory cells from a solution containing residual DTT to a buffer solution. The viability and integrity of the inflammatory cells are maintained during the acoustofluidic-based cell transfer process. Our acoustofluidic technique removes residual DTT generated in sputum liquefaction and facilitates immunophenotyping of major inflammatory cells from sputum samples. It enables cell transfer in a continuous flow, which aids the development of an automated, integrated system for on-chip sputum processing and analysis.
Assuntos
Inflamação/patologia , Técnicas Analíticas Microfluídicas , Som , Escarro , Sobrevivência Celular/efeitos dos fármacos , Ditiotreitol/farmacologia , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Escarro/efeitos dos fármacosRESUMO
MOTIVATION: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources. RESULTS: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case. CONCLUSION: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types. AVAILABILITY AND IMPLEMENTATION: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html). CONTACT: rbrinkman@bccrc.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Fenômenos Fisiológicos Celulares , Citometria de Fluxo/métodos , Ontologia Genética , Imunofenotipagem/métodos , Software , Humanos , Antígenos Comuns de Leucócito/análise , Receptores CCR7/análiseRESUMO
Abnormal telomere lengths have been linked to cancer and other hematologic disorders. Determination of mean telomere content (MTC) is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Here, we compared a quantitative Polymerase Chain Reaction approach (qPCR) and a flow cytometric approach, fluorescence in situ hybridization (Flow-FISH), to evaluate telomere content distribution in total patient peripheral blood mononuclear cells or specific cell populations. Flow-FISH is based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA)3 probe and DNA staining with propidium iodide. We showed that both qPCR and Flow-FISH provide a robust measurement, with Flow-FISH measuring a relative content longer than qPCR at a single cell approach and that TRF2 fluorescence intensity did not correlate with MTC. Both methods showed comparable telomere content reduction with age, and the rate of relative telomere loss was similar. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Assuntos
Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente/métodos , Leucócitos Mononucleares/química , Reação em Cadeia da Polimerase em Tempo Real/métodos , Telômero/química , Adulto , Idoso , Linhagem Celular , DNA/química , Feminino , Fluoresceína/química , Fluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos Nucleicos Peptídicos/química , Propídio/química , Análise de Célula Única/métodos , Adulto JovemRESUMO
The very low density lipoprotein receptor (VLDLR) is a member of the low-density lipoprotein receptor family that binds multiple ligands and plays a key role in brain development. Although the VLDLR mediates pleiotropic biological processes, only a limited amount of information is available regarding its role in adaptive immunity. In this study, we identify an important role for the VLDLR in attenuating house dust mite (HDM)-induced airway inflammation in experimental murine asthma. We show that HDM-challenged Vldlr(-/-) mice have augmented eosinophilic and lymphocytic airway inflammation with increases in Th2 cytokines, C-C chemokines, IgE production, and mucous cell metaplasia. A genome-wide analysis of the lung transcriptome identified that mRNA levels of CD209e (DC-SIGNR4), a murine homolog of DC-SIGN, were increased in the lungs of HDM-challenged Vldlr(-/-) mice, which suggested that the VLDLR might modify dendritic cell (DC) function. Consistent with this, VLDLR expression by human monocyte-derived DCs was increased by HDM stimulation. In addition, 55% of peripheral blood CD11c(+) DCs from individuals with allergy expressed VLDLR under basal conditions. Lastly, the adoptive transfer of HDM-pulsed, CD11c(+) bone marrow-derived DCs (BMDCs) from Vldlr(-/-) mice to the airways of wild type recipient mice induced augmented eosinophilic and lymphocytic airway inflammation upon HDM challenge with increases in Th2 cytokines, C-C chemokines, IgE production, and mucous cell metaplasia, as compared with the adoptive transfer of HDM-pulsed, CD11c(+) BMDCs from wild type mice. Collectively, these results identify a novel role for the VLDLR as a negative regulator of DC-mediated adaptive immune responses in HDM-induced allergic airway inflammation.
Assuntos
Imunidade Adaptativa , Células Dendríticas/imunologia , Pyroglyphidae , Receptores de LDL/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de LDL/genética , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Células Th2/imunologia , Células Th2/patologiaRESUMO
BACKGROUND: CD200 and its receptor CD200R are both type I membrane glycoproteins that modulate the activity of myeloid and lymphoid cells, and their interaction is functionally important in the suppression of effector T-cell responses by regulatory T-cells. We aimed to investigate the extent of expression of CD200 and CD200R1 on CD4+ T-cells in blood of children with ulcerative colitis (UC) and Crohn's disease (CD) and to explore their correlations with effector T cell subsets, regulatory T cells (Treg), and routine clinical and serological markers. METHODS: The frequencies of blood CD4+ expressing CD200 and CD200R1 as well as T-helper CD4+CD25+Foxp3+ Treg, CD4+ IL-17+ (Th17), CD4+ IFN-γ + (Th1), and CD4+IL-4+ (Th2) were estimated by flow cytometry in 23 patients with CD, 14 with UC, and 14 healthy volunteers (HCs). The clinical and inflammatory markers were also investigated. RESULTS: IBD patients showed decreased CD4+CD200R1+ T-cells, whereas, CD4+CD200+ T-cells were significantly higher in patient groups compared with healthy controls. Treg cells were found significantly decreased in the patients with UC and CD compared with healthy controls (both at p < 0.01). The percentage of Th17 was found significantly increased in CD (p < 0.05) compared with UC patients and healthy subjects (p = 0.014). CD200+CD4+ T-cells showed significant positive correlations with ESR, Th1, and Th17 (r = 0.438, p < 0.05; r = 0.411, p < 0.05; r = 0.492, p < 0.01, respectively). CD200R1+CD4+ T-cells correlated positively with Th2 and Treg (r = 0.482, p < 0.01, and r = 0.457, p < 0.01, respectively) and negatively with ESR (r = -0.387, p < 0.01). CONCLUSIONS: Our study demonstrates an aberrant expression of CD200/CD200R1 on CD4+ T-cells in IBD patients and these data may have potent pathological significance in IBD pathophysiology.
Assuntos
Antígenos CD/análise , Antígenos de Superfície/análise , Linfócitos T CD4-Positivos/imunologia , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Receptores de Superfície Celular/análise , Adolescente , Feminino , Citometria de Fluxo , Humanos , Masculino , Receptores de Orexina , Linfócitos T Reguladores/imunologia , Células Th17/imunologiaRESUMO
Because nutrient-sensing nuclear and cytosolic acetylation mediates cellular autophagy, we investigated whether mitochondrial acetylation modulates mitochondrial autophagy (mitophagy). Knockdown of GCN5L1, a component of the mitochondrial acetyltransferase machinery, diminished mitochondrial protein acetylation and augmented mitochondrial enrichment of autophagy mediators. This program was disrupted by SIRT3 knockdown. Chronic GCN5L1 depletion increased mitochondrial turnover and reduced mitochondrial protein content and/or mass. In parallel, mitochondria showed blunted respiration and enhanced 'stress-resilience'. Genetic disruption of autophagy mediators Atg5 and p62 (also known as SQSTM1), as well as GCN5L1 reconstitution, abolished deacetylation-induced mitochondrial autophagy. Interestingly, this program is independent of the mitophagy E3-ligase Parkin (also known as PARK2). Taken together, these data suggest that deacetylation of mitochondrial proteins initiates mitochondrial autophagy in a canonical autophagy-mediator-dependent program and shows that modulation of this regulatory program has ameliorative mitochondrial homeostatic effects.
Assuntos
Autofagia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acetilação , Animais , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Selective isolation of cell subpopulations with defined biological characteristics is crucial for many biological studies and clinical applications. In this work, we present the development of an acoustofluidic fluorescence activated cell sorting (FACS) device that simultaneously performs on-demand, high-throughput, high-resolution cell detection and sorting, integrated onto a single chip. Our acoustofluidic FACS device uses the "microfluidic drifting" technique to precisely focus cells/particles three dimensionally and achieves a flow of single-file particles/cells as they pass through a laser interrogation region. We then utilize short bursts (150 µs) of standing surface acoustic waves (SSAW) triggered by an electronic feedback system to sort fluorescently labeled particles/cells with desired biological properties. We have demonstrated continuous isolation of fluorescently labeled HeLa cells from unlabeled cells at a throughput of â¼1200 events/s with a purity reaching 92.3 ± 3.39%. Furthermore, 99.18% postsort cell viability indicates that our acoustofluidic sorting technique maintains a high integrity of cells. Therefore, our integrated acoustofluidic FACS device is demonstrated to achieve two-way cell sorting with high purity, biocompatibility, and biosafety. We believe that our device has significant potential for use as a low-cost, high-performance, portable, and user-friendly FACS instrument.
Assuntos
Acústica , Citometria de Fluxo/instrumentação , Sobrevivência Celular , Citometria de Fluxo/economia , Citometria de Fluxo/normas , Células HeLa , Humanos , Reprodutibilidade dos TestesRESUMO
A comprehensive study of the cellular components of the immune system requires both deep and broad immunophenotyping of numerous cell populations in an efficient and practical manner. In this chapter, we describe the technical aspects of studying the human immunome using high-dimensional (15 color) fluorescence-based immunophenotyping. We focus on the technical aspects of polychromatic flow cytometry and the initial stages in developing a panel for comprehensive leukocyte immunophenotyping (CLIP). We also briefly discuss how this panel is being used and the challenges of encyclopedic analysis of these rich data sets.
Assuntos
Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Leucócitos/citologia , Animais , Biomarcadores/metabolismo , Citometria de Fluxo/instrumentação , Corantes Fluorescentes/química , Humanos , Imunofenotipagem/instrumentação , Leucócitos/química , Leucócitos/metabolismoRESUMO
Leishmaniasis causes significant morbidity and mortality worldwide, and no vaccines against this disease are available. Previously, we had shown that the amastigote-specific protein p27 (Ldp27) is a component of an active cytochrome c oxidase complex in Leishmania donovani and that upon deletion of its gene the parasite had reduced virulence in vivo. In this study, we have shown that Ldp27(-/-) parasites do not survive beyond 20 wk in BALB/c mice and hence are safe as an immunogen. Upon virulent challenge, mice 12 wk postimmunization showed significantly lower parasite burden in the liver and spleen. When mice were challenged 20 wk postimmunization, a significant reduction in parasite burden was still noted, suggesting long-term protection by Ldp27(-/-) immunization. Immunization with Ldp27(-/-) induced both pro- and anti-inflammatory cytokine responses and activated splenocytes for enhanced leishmanicidal activity in association with NO production. Protection in both short- and long-term immunized mice after challenge with the wild-type parasite correlated with the stimulation of multifunctional Th1-type CD4 and CD8 T cells. Adoptive transfer of T cells from long-term immunized mice conferred protection against virulent challenge in naive recipient mice, suggesting involvement of memory T cell response in protection against Leishmania infection. Immunization of mice with Ldp27(-/-)also demonstrated cross-protection against Leishmania major and Leishmania braziliensis infection. Our data show that genetically modified live attenuated Ldp27(-/-) parasites are safe, induce protective immunity even in the absence of parasites, and can provide protection against homologous and heterologous Leishmania species.
Assuntos
Antígenos de Protozoários/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Deleção de Genes , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Proteínas de Protozoários/genética , Transferência Adotiva , Animais , Antígenos de Protozoários/imunologia , Proteção Cruzada , Complexo IV da Cadeia de Transporte de Elétrons/imunologia , Feminino , Imunização , Memória Imunológica , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/parasitologia , Linfócitos T/imunologia , Linfócitos T/transplante , Tempo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologiaRESUMO
Plerixafor (Mozobil) is a CXCR4 antagonist that rapidly mobilizes CD34(+) cells into circulation. Recently, plerixafor has been used as a single agent to mobilize peripheral blood stem cells for allogeneic hematopoietic cell transplantation. Although G-CSF mobilization is known to alter the phenotype and cytokine polarization of transplanted T cells, the effects of plerixafor mobilization on T cells have not been well characterized. In this study, we show that alterations in the T cell phenotype and cytokine gene expression profiles characteristic of G-CSF mobilization do not occur after mobilization with plerixafor. Compared with nonmobilized T cells, plerixafor-mobilized T cells had similar phenotype, mixed lymphocyte reactivity, and Foxp3 gene expression levels in CD4(+) T cells, and did not undergo a change in expression levels of 84 genes associated with Th1/Th2/Th3 pathways. In contrast with plerixafor, G-CSF mobilization decreased CD62L expression on both CD4 and CD8(+) T cells and altered expression levels of 16 cytokine-associated genes in CD3(+) T cells. To assess the clinical relevance of these findings, we explored a murine model of graft-versus-host disease in which transplant recipients received plerixafor or G-CSF mobilized allograft from MHC-matched, minor histocompatibility-mismatched donors; recipients of plerixafor mobilized peripheral blood stem cells had a significantly higher incidence of skin graft-versus-host disease compared with mice receiving G-CSF mobilized transplants (100 versus 50%, respectively, p = 0.02). These preclinical data show plerixafor, in contrast with G-CSF, does not alter the phenotype and cytokine polarization of T cells, which raises the possibility that T cell-mediated immune sequelae of allogeneic transplantation in humans may differ when donor allografts are mobilized with plerixafor compared with G-CSF.