Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(6): 2029-34, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19208815

RESUMO

Rett Syndrome (RTT) is a severe form of X-linked mental retardation caused by mutations in the gene coding for methyl CpG-binding protein 2 (MECP2). Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. Here we show that systemic treatment of MeCP2 mutant mice with an active peptide fragment of Insulin-like Growth Factor 1 (IGF-1) extends the life span of the mice, improves locomotor function, ameliorates breathing patterns, and reduces irregularity in heart rate. In addition, treatment with IGF-1 peptide increases brain weight of the mutant mice. Multiple measurements support the hypothesis that RTT results from a deficit in synaptic maturation in the brain: MeCP2 mutant mice have sparse dendritic spines and reduced PSD-95 in motor cortex pyramidal neurons, reduced synaptic amplitude in the same neurons, and protracted cortical plasticity in vivo. Treatment with IGF-1 peptide partially restores spine density and synaptic amplitude, increases PSD-95, and stabilizes cortical plasticity to wild-type levels. Our results thus strongly suggest IGF-1 as a candidate for pharmacological treatment of RTT and potentially of other CNS disorders caused by delayed synapse maturation.


Assuntos
Fator de Crescimento Insulin-Like I/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/tratamento farmacológico , Potenciais de Ação , Animais , Encéfalo , Modelos Animais de Doenças , Frequência Cardíaca , Fator de Crescimento Insulin-Like I/uso terapêutico , Camundongos , Camundongos Mutantes , Atividade Motora , Neurônios , Tamanho do Órgão , Taxa de Sobrevida , Transmissão Sináptica , Resultado do Tratamento
2.
Proc Natl Acad Sci U S A ; 105(27): 9409-14, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18606990

RESUMO

The mapping of eye-specific, geniculocortical inputs to primary visual cortex (V1) is highly sensitive to the balance of correlated activity between the two eyes during a restricted postnatal critical period for ocular dominance plasticity. This critical period is likely to have amplified expression of genes and proteins that mediate synaptic plasticity. DNA microarray analysis of transcription in mouse V1 before, during, and after the critical period identified 31 genes that were up-regulated and 22 that were down-regulated during the critical period. The highest-ranked up-regulated gene, cardiac troponin C, codes for a neuronal calcium-binding protein that regulates actin binding and whose expression is activity-dependent and relatively selective for layer-4 star pyramidal neurons. The highest-ranked down-regulated gene, synCAM, also has actin-based function. Actin-binding function, G protein signaling, transcription, and myelination are prominently represented in the critical period transcriptome. Monocular deprivation during the critical period reverses the expression of nearly all critical period genes. The profile of regulated genes suggests that synaptic stability is a principle driver of critical period gene expression and that alteration in visual activity drives homeostatic restoration of stability.


Assuntos
Período Crítico Psicológico , Regulação da Expressão Gênica no Desenvolvimento , Privação Sensorial/fisiologia , Sinapses/genética , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Dominância Ocular/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Bainha de Mielina/genética , Neurônios/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Troponina C/genética , Troponina C/metabolismo , Regulação para Cima/genética , Córtex Visual/crescimento & desenvolvimento
3.
Nat Neurosci ; 13(4): 450-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228806

RESUMO

A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arc(-/-) mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arc(-/-) mice lacked stimulus-selective response potentiation. Although Arc(-/-) mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.


Assuntos
Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Escuridão , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Estimulação Luminosa , Privação Sensorial/fisiologia , Transmissão Sináptica/genética , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Proteínas do Citoesqueleto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA