Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Med Chem Res ; 24(7): 2838-2861, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26446298

RESUMO

The anti-tumor activity of imidazolium salts is highly dependent upon the substituents on the nitrogen atoms of the imidazolium cation. We have synthesized and characterized a series of naphthalene-substituted imidazolium salts and tested them against a variety of non-smallcell lung cancer cell lines. Several of these complexes displayed anticancer activity comparable to cisplatin. These compounds induced apoptosis in the NCI-H460 cell line as determined by Annexin V staining, caspase-3, and PARP cleavage. These results strongly suggest that this class of compounds can serve as potent chemotherapeutic agents.

2.
J Mater Chem B ; 7(47): 7502-7514, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31712794

RESUMO

HBT-Cy 1 has been previously reported as a highly selective fluorescent probe for lysosome visualization in live cells. To further investigate the role of the structural components of HBT-Cy in lysosome selectivity, cyanine based fluorescent probe series (2-5) have been synthesized in good yields by connecting benzothiazolium cyanine (Cy) with 2-hydroxyphenylbenzothiazole (HBT) via a meta phenylene ring. Probes 2-5 exhibited exceptional photophysical properties including bright red-emission (λem≈ 630-650 nm), a large Stokes shift (Δλ > 130 nm) and high fluorescence quantum yields (φfl≈ 0.1-0.5). Probes 2, 3, and 5 exhibited exceptional selectivity towards cellular lysosomes in NHLF and MO3.13 cells. Our further study revealed that the phenyl benzothiazolium cyanine component (6) was the lysosome directing group in the HBT-Cy probe structure. The attachment of the hydroxyphenyl benzothiazole (HBT) component to the HBT-Cy probe structure has significantly improved its photophysical properties. Lysosome probes 2, 3 and 5 exhibited excellent biocompatibility, quick staining, bright red fluorescence, and wash-free application for live cell imaging. These probes further exhibited excellent characteristics for bioimaging experiments including a non-alkalinizing nature, high biocompatibility, high photostability and long-term imaging ability (>4 hours).


Assuntos
Benzotiazóis/química , Carbocianinas/química , Corantes Fluorescentes/química , Lisossomos/química , Fenóis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Temperatura
3.
Dalton Trans ; 41(21): 6500-6, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22402409

RESUMO

Silver N-heterocyclic carbene complexes have been shown to have great potential as antimicrobial agents, affecting a wide spectrum of both Gram-positive and Gram-negative bacteria. A new series of three silver carbene complexes (SCCs) based on 4,5,6,7-tetrachlorobenzimidazole has been synthesized, characterized, and tested against a panel of clinical strains of bacteria. The imidazolium salts and their precursors were characterized by elemental analysis, mass spectrometry, (1)H and (13)C NMR spectroscopy, and single crystal X-ray diffraction. The silver carbene complexes, SCC32, SCC33, and SCC34 were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and single crystal X-ray diffraction. These complexes proved highly efficacious with minimum inhibitory concentrations (MICs) ranging from 0.25 to 6 µg mL(-1). Overall, the complexes were effective against highly resistant bacteria strains, such as methicillin-resistant Staphylococcus aureus (MRSA), weaponizable bacteria, such as Yersinia pestis, and pathogens found within the lungs of cystic fibrosis patients, such as Pseudomonas aeruginosa, Alcaligenes xylosoxidans, and Burkholderia gladioli. SCC33 and SCC34 also showed clinically relevant activity against a silver-resistant strain of Escherichia coli based on MIC testing.


Assuntos
Bactérias/efeitos dos fármacos , Benzimidazóis/química , Técnicas de Química Sintética , Farmacorresistência Bacteriana/efeitos dos fármacos , Metano/análogos & derivados , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Prata/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Metano/química , Testes de Sensibilidade Microbiana , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA