Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 223: 9-48, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000817

RESUMO

Photonic structures in ordered, quasi-ordered or disordered forms have evolved across many different animal and plant systems. They can produce complex and often functional optical responses through coherent and incoherent scattering processes, often too, in combination with broadband or narrowband absorbing pigmentation. Interestingly, these systems appear highly tolerant of faults in their photonic structures, with imperfections in their structural order appearing not to impact, discernibly, the systems' optical signatures. The extent to which any such biological system deviates from presenting perfect structural order can dictate the optical properties of that system and, thereby, the optical properties that system delivers. However, the nature and extent of the optical costs and benefits of imperfect order in biological systems demands further elucidation. Here, we identify the extent to which biological photonic systems are tolerant of defects and imperfections. Certainly, it is clear that often significant inherent variations in the photonic structures of these systems, for instance a relatively broad distribution of lattice constants, can consistently produce what appear to be effective visual appearances and optical performances. In this article, we review previously investigated biological photonic systems that present ordered, quasi-ordered or disordered structures. We discuss the form and nature of the optical behaviour of these structures, focusing particularly on the associated optical costs and benefits surrounding the extent to which their structures deviate from what might be considered ideal systems. Then, through detailed analyses of some well-known 1D and 2D structurally coloured systems, we analyse one of the common manifestations of imperfect order, namely, the extent and nature of positional disorder in the systems' spatial distribution of layers and scattering centres. We use these findings to inform optical modelling that presents a quantitative and qualitative description of the optical costs and benefits of such positional disorder among ordered and quasi-ordered 1D and 2D photonic systems. As deviation from perfectly ordered structures invariably limits the performance of technology-oriented synthetic photonic processes, we suggest that the use of bio-inspired fault tolerance principles would add value to applied photonic technologies.


Assuntos
Fótons , Cristalização , Óptica e Fotônica , Espalhamento de Radiação
2.
Biol Lett ; 16(4): 20200063, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289243

RESUMO

Extant weevils exhibit a remarkable colour palette that ranges from muted monochromatic tones to rainbow-like iridescence, with the most vibrant colours produced by three-dimensional photonic nanostructures housed within cuticular scales. Although the optical properties of these nanostructures are well understood, their evolutionary history is not fully resolved, in part due to a poor knowledge of their fossil record. Here, we report three-dimensional photonic nanostructures preserved in brightly coloured scales of two weevils, belonging to the genus Phyllobius or Polydrusus, from the Pleistocene (16-10 ka) of Switzerland. The scales display vibrant blue, green and yellow hues that resemble those of extant Phyllobius/Polydrusus. Scanning electron microscopy and small-angle X-ray scattering analyses reveal that the subfossil scales possess a single-diamond photonic crystal nanostructure. In extant Phyllobius/Polydrusus, the near-angle-independent blue and green hues function primarily in crypsis. The preservation of far-field, angle-independent structural colours in the Swiss subfossil weevils and their likely function in substrate matching confirm the importance of investigating fossil and subfossil photonic nanostructures to understand the evolutionary origins and diversification of colours and associated behaviours (e.g. crypsis) in insects.


Assuntos
Gorgulhos , Animais , Cor , Fósseis , Microscopia Eletrônica de Varredura , Suíça
3.
Sci Adv ; 4(4): e1700988, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651455

RESUMO

Lepidopteran scales exhibit remarkably complex ultrastructures, many of which produce structural colors that are the basis for diverse communication strategies. Little is known, however, about the early evolution of lepidopteran scales and their photonic structures. We report scale architectures from Jurassic Lepidoptera from the United Kingdom, Germany, Kazakhstan, and China and from Tarachoptera (a stem group of Amphiesmenoptera) from mid-Cretaceous Burmese amber. The Jurassic lepidopterans exhibit a type 1 bilayer scale vestiture: an upper layer of large fused cover scales and a lower layer of small fused ground scales. This scale arrangement, plus preserved herringbone ornamentation on the cover scale surface, is almost identical to those of some extant Micropterigidae. Critically, the fossil scale ultrastructures have periodicities measuring from 140 to 2000 nm and are therefore capable of scattering visible light, providing the earliest evidence of structural colors in the insect fossil record. Optical modeling confirms that diffraction-related scattering mechanisms dominate the photonic properties of the fossil cover scales, which would have displayed broadband metallic hues as in numerous extant Micropterigidae. The fossil tarachopteran scales exhibit a unique suite of characteristics, including small size, elongate-spatulate shape, ridged ornamentation, and irregular arrangement, providing novel insight into the early evolution of lepidopteran scales. Combined, our results provide the earliest evidence for structural coloration in fossil lepidopterans and support the hypothesis that fused wing scales and the type 1 bilayer covering are groundplan features of the group. Wing scales likely had deep origins in earlier amphiesmenopteran lineages before the appearance of the Lepidoptera.


Assuntos
Evolução Biológica , Fósseis , Mariposas/anatomia & histologia , Animais , Asas de Animais/anatomia & histologia , Asas de Animais/ultraestrutura
4.
J R Soc Interface ; 14(131)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28615493

RESUMO

The evolution of structural colour mechanisms in biological systems has given rise to many interesting optical effects in animals and plants. The instance of the scarab beetle Chrysina resplendens is particularly distinctive. Its exoskeleton has a bright, golden appearance and reflects both right-handed and left-handed circularly polarized light concurrently. The chiral nanostructure responsible for these properties is a helicoid, in which birefringent dielectric planes are assembled with an incremental rotation. This study correlates details of the beetle's circularly polarized reflectance spectra directly with physical aspects of its structural morphology. Electron micrography is used to identify and measure the physical dimensions of the key constituent components. These include a chiral multilayer configuration comprising two chirped, left-handed helicoids that are separated by a birefringent retarder. A scattering matrix technique is used to simulate the system's optical behaviour in which the roles of each component of the morphological substructure are elucidated by calculation of the fields throughout its depth.


Assuntos
Besouros/fisiologia , Tegumento Comum/fisiologia , Animais , Birrefringência , Luz , Polarografia , Propriedades de Superfície
5.
Interface Focus ; 7(4): 20160129, 2017 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630672

RESUMO

Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA