Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(19): 11374-11386, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36300637

RESUMO

Breaking codon degeneracy for the introduction of non-canonical amino acids offers many opportunities in synthetic biology. Yet, despite the existence of 64 codons, the code has only been expanded to 25 amino acids in vitro. A limiting factor could be the over-reliance on synthetic tRNAs which lack the post-transcriptional modifications that improve translational fidelity. To determine whether modified, wild-type tRNA could improve sense codon reassignment, we developed a new fluorous method for tRNA capture and applied it to the isolation of roughly half of the Escherichia coli tRNA isoacceptors. We then performed codon competition experiments between the five captured wild-type leucyl-tRNAs and their synthetic counterparts, revealing a strong preference for wild-type tRNA in an in vitro translation system. Finally, we compared the ability of wild-type and synthetic leucyl-tRNA to break the degeneracy of the leucine codon box, showing that only captured wild-type tRNAs are discriminated with enough fidelity to accurately split the leucine codon box for the encoding of three separate amino acids. Wild-type tRNAs are therefore enabling reagents for maximizing the reassignment potential of the genetic code.


Assuntos
Código Genético , RNA de Transferência , Leucina/genética , Códon/genética , Códon/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas
2.
ACS Synth Biol ; 13(1): 119-128, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194520

RESUMO

The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/metabolismo , Engenharia de Proteínas/métodos , Proteínas/metabolismo , Peptídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoacil-tRNA Sintetases/metabolismo
3.
Nat Commun ; 14(1): 5008, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591858

RESUMO

Genetic code expansion (GCE) offers many exciting opportunities for the creation of synthetic organisms and for drug discovery methods that utilize in vitro translation. One type of GCE, sense codon reassignment (SCR), focuses on breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. SCR has great potential for genetic code expansion, but extensive SCR is limited by the post-transcriptional modifications on tRNAs and wobble reading of these tRNAs by the ribosome. To better understand codon-tRNA pairing, here we develop an assay to evaluate the ability of aminoacyl-tRNAs to compete with each other for a given codon. We then show that hyperaccurate ribosome mutants demonstrate reduced wobble reading, and when paired with unmodified tRNAs lead to extensive and predictable SCR. Together, we encode seven distinct amino acids across nine codons spanning just two codon boxes, thereby demonstrating that the genetic code hosts far more re-assignable space than previously expected, opening the door to extensive genetic code engineering.


Assuntos
Aminoácidos , Magnoliopsida , Aminoácidos/genética , Código Genético , Aminoacil-RNA de Transferência , Bioensaio , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA