Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 15(1): 75-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25545191

RESUMO

We demonstrate spatial probing of carrier transport within GaAs/AlGaAs core-shell nanowires with nanometer lateral resolution and subsurface sensitivity by energy-variable electron beam induced current imaging. Carrier drift that evolves with applied electric field is distinguished from a coupled drift-diffusion length. Along with simulation of injected electron trajectories, combining beam energy tuning with precise positioning for selective probing of core and shell reveals axial position- and bias-dependent differences in carrier type and transport along parallel conduction channels. These results indicate how analysis of transport within heterostructured nanomaterials is no longer limited to nonlocal or surface measurements.


Assuntos
Alumínio/química , Gálio/química , Nanofios/química , Elétrons
2.
Nanoscale ; 16(23): 11156-11162, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38623744

RESUMO

Understanding the behavior of materials in multi-dimensional architectures composed of atomically thin two-dimensional (2D) materials and three-dimensional (3D) materials has become mandatory for progress in materials preparation via various epitaxy techniques, such as van der Waals and remote epitaxy methods. We investigated the growth behavior of ZnO on monolayer MoS2 as a model system to study the growth of a 3D material on a 2D material, which is beyond the scope of remote and van der Waals epitaxy. The study revealed column-to-column alignment and inversion of crystallinity, which can be explained by combinatorial epitaxy, grain alignment across an atomically sharp interface, and a compliant substrate. The growth study enabled the formation of a ZnO/MoS2 heterostructure with type-I band alignment. Our findings will have a scientific impact on realizing 2D/3D heterostructures for practical device applications.

3.
Phys Rev Lett ; 107(15): 156802, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107312

RESUMO

We report the hot photoexcited electron transfer across the coaxial interface of a cylindrical core-shell nanowire. Modulation of the transfer rates, manifested as a large tunability of the voltage onset of negative differential resistance and of voltage-current phase, is achieved using three different modes. The coupling of electrostatic gating, incident photon energy, and the incident photon intensity to transfer rates is facilitated by the combined influences of geometric confinement and heterojunction shape on hot-electron transfer, and by electron-electron scattering rates that can be altered by varying the incident photon flux, with evidence of weak electron-phonon scattering. Dynamic manipulation of this transfer rate permits the introduction and control of a continuously adjustable phase delay of up to ∼130° within a single nanometer-scale device element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA