Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772042

RESUMO

The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR towards P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan and 3 mutants derived from fast neutron (FN) irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level, but also defense pathways unique to each cultivar such as stilbenoid, diarylheptanoid and gingerol biosynthesis, and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible FN mutants lacked enrichment of three terpenoid related-pathways and two cell wall-related pathways at either one or both timepoints, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important KEGG pathways at either one or both timepoints, including sesquiterpenoid and triterpenoid biosynthesis, thiamine metabolism, arachidonic acid, stilbenoid, diarylheptanoid and gingerol biosynthesis, and monobactam biosynthesis. Additionally, thirty-one genes which were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins, valine, leucine, and isoleucine biosynthesis and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and furthers our understanding of the complex network associated with QDR mechanisms in soybean towards P. sojae.

2.
Mol Breed ; 41(4): 27, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37309353

RESUMO

Composition of fatty acids (FAs) in soybean seed is important for the quality and uses of soybean oil. Using gas chromatography, we have measured soybean FAs profiles of 621 soybean accessions (maturity groups I through IV) grown in five different environments; Columbus, OH (2015), Wooster, OH (2014 and 2015), Plymouth, NC (2015), and Urbana, IL (2015). Using publicly available SoySNP50K genotypic data and the FA profiles from this study, a genome-wide association analysis was completed with a compressed mixed linear model to identify 43 genomic regions significantly associated with a fatty acid at a genome wide significance threshold of 5%. Among these regions, one and three novel genomic regions associated with palmitic acid and stearic acid, respectively, were identified across all five environments. Additionally, nine novel environment-specific FA-related genomic regions were discovered providing new insights into the genetics of soybean FAs. Previously reported FA-related loci, such as FATB1a, SACPD-C, and KASIII, were also confirmed in this study. Our results will be useful for future functional studies and marker-assisted breeding for soybean FAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01216-1.

3.
Theor Appl Genet ; 133(12): 3441-3454, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32960288

RESUMO

KEY MESSAGE: Genomic prediction of quantitative resistance toward Phytophthora sojae indicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers. Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR to P. sojae in two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain for P. sojae QDR in soybean breeding programs.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Modelos Estatísticos , Phytophthora/fisiologia , Doenças das Plantas/genética , Locos de Características Quantitativas , Sementes/genética , Teorema de Bayes , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fenótipo , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sementes/imunologia , Sementes/parasitologia , Glycine max/imunologia , Glycine max/parasitologia
4.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825674

RESUMO

Soybean seed composition has a profound impact on its market value and commercial use as an important commodity. Increases in oil and protein content have been historically pursued by breeders and genetic engineers; consequently, rapid methods for their quantification are well established. The interest in complete carbohydrate profiles in mature seeds, on the other hand, has recently increased due to numerous attempts to redirect carbohydrates into oil and protein or to offer specialty seed with a specific sugar profile to meet animal nutritional requirements. In this work, a sequential protocol for quantifying reserve and structural carbohydrates in soybean seed was developed and validated. Through this procedure, the concentrations of soluble sugars, sugar alcohols, starch, hemicellulose, and crystalline cellulose can be determined in successive steps from the same starting material using colorimetric assays, LC-MS/MS, and GC-MS. The entire workflow was evaluated using internal standards to estimate the recovery efficiency. Finally, it was successfully applied to eight soybean genotypes harvested from two locations, and the resulting correlations of carbohydrate and oil or protein are presented. This methodology has the potential not only to guide soybean cultivar optimization processes but also to be expanded to other crops with only slight modifications.


Assuntos
Carboidratos/análise , Glycine max/química , Óleos de Plantas/análise , Sementes/química , Proteínas de Soja/análise , Fluxo de Trabalho , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Plant Biotechnol J ; 17(4): 724-735, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30191675

RESUMO

Cis-regulatory elements in promoters are major determinants of binding specificity of transcription factors (TFs) for transcriptional regulation. To improve our understanding of how these short DNA sequences regulate gene expression, synthetic promoters consisting of both classical (CACGTG) and variant G-box core sequences along with different flanking sequences derived from the promoters of three different highly expressing soybean genes, were constructed and used to regulate a green fluorescent protein (gfp) gene. Use of the classical 6-bp G-box provided information on the base level of GFP expression while modifications to the 2-4 flanking bases on either side of the G-box influenced the intensity of gene expression in both transiently transformed lima bean cotyledons and stably transformed soybean hairy roots. The proximal 2-bp sequences on either flank of the G-box significantly affected G-box activity, while the distal 2-bp flanking nucleotides also influenced gene expression albeit with a decreasing effect. Manipulation of the upstream 2- to 4-bp flanking sequence of a G-box variant (GACGTG), found in the proximal region of a relatively weak soybean glycinin promoter, significantly enhanced promoter activity using both transient and stable expression assays, if the G-box variant was first converted into a classical G-box (CACGTG). In addition to increasing our understanding of regulatory element composition and structure, this study shows that minimal targeted changes in native promoter sequences can lead to enhanced gene expression, and suggests that genome editing of the promoter region can result in useful and predictable changes in native gene expression.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Globulinas/genética , Glycine max/genética , Regiões Promotoras Genéticas/genética , Proteínas de Soja/genética , Cotilédone/genética , Genes Reporter , Phaseolus/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
6.
Theor Appl Genet ; 132(6): 1639-1659, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30806741

RESUMO

KEY MESSAGE: Genomic regions associated with seed protein, oil and amino acid contents were identified by genome-wide association analyses. Geographic distributions of haplotypes indicate scope of improvement of these traits. Soybean [Glycine max (L.) Merr.] protein and oil are used worldwide in feed, food and industrial materials. Increasing seed protein and oil contents is important; however, protein content is generally negatively correlated with oil content. We conducted a genome-wide association study using phenotypic data collected from five environments for 621 accessions in maturity groups I-IV and 34,014 markers to identify quantitative trait loci (QTL) for seed content of protein, oil and several essential amino acids. Three and five genomic regions were associated with seed protein and oil contents, respectively. One, three, one and four genomic regions were associated with cysteine, methionine, lysine and threonine content (g kg-1 crude protein), respectively. As previously shown, QTL on chromosomes 15 and 20 were associated with seed protein and oil contents, with both exhibiting opposite effects on the two traits, and the chromosome 20 QTL having the most significant effect. A multi-trait mixed model identified trait-specific QTL. A QTL on chromosome 5 increased oil with no effect on protein content, and a QTL on chromosome 10 increased protein content with little effect on oil content. The chromosome 10 QTL co-localized with maturity gene E2/GmGIa. Identification of trait-specific QTL indicates feasibility to reduce the negative correlation between protein and oil contents. Haplotype blocks were defined at the QTL identified on chromosomes 5, 10, 15 and 20. Frequencies of positive effect haplotypes varied across maturity groups and geographic regions, providing guidance on which alleles have potential to contribute to soybean improvement for specific regions.


Assuntos
Aminoácidos/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Óleo de Soja/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Desequilíbrio de Ligação , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/genética
7.
Int J Mol Sci ; 18(6)2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587169

RESUMO

Soybean [Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.


Assuntos
Glycine max/química , Glycine max/genética , Óleos de Plantas/análise , Proteínas de Plantas/análise , Locos de Características Quantitativas , Sementes/química , Sementes/genética , Aminoácidos/análise , Mapeamento Cromossômico , Ácidos Graxos/análise , Estudos de Associação Genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
8.
BMC Genomics ; 17(1): 607, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515508

RESUMO

BACKGROUND: Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on P. sojae populations. Thus, partial resistance provides a more durable resistance against the pathogen. In previous work, plant introductions (PIs) originating from the Republic of Korea (S. Korea) have shown to be excellent sources for high levels of partial resistance against P. sojae. RESULTS: Resistance to two highly virulent P. sojae isolates was assessed in 1395 PIs from S. Korea via a greenhouse layer test. Lines exhibiting possible Rps gene immunity or rot due to other pathogens were removed and the remaining 800 lines were used to identify regions of quantitative resistance using genome-wide association mapping. Sixteen SNP markers on chromosomes 3, 13 and 19 were significantly associated with partial resistance to P. sojae and were grouped into seven quantitative trait loci (QTL) by linkage disequilibrium blocks. Two QTL on chromosome 3 and three QTL on chromosome 19 represent possible novel loci for partial resistance to P. sojae. While candidate genes at QTL varied in their predicted functions, the coincidence of QTLs 3-2 and 13-1 on chromosomes 3 and 13, respectively, with Rps genes and resistance gene analogs provided support for the hypothesized mechanism of partial resistance involving weak R-genes. CONCLUSIONS: QTL contributing to partial resistance towards P. sojae in soybean germplasm originating from S. Korea were identified. The QTL identified in this study coincide with previously reported QTL, Rps genes, as well as novel loci for partial resistance. Molecular markers associated with these QTL can be used in the marker-assisted introgression of these alleles into elite cultivars. Annotations of genes within QTL allow hypotheses on the possible mechanisms of partial resistance to P. sojae.


Assuntos
Cromossomos de Plantas/química , Resistência à Doença/genética , Genes de Plantas/imunologia , Genoma de Planta , Glycine max/genética , Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Espécies Introduzidas , Desequilíbrio de Ligação , Phytophthora/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Caules de Planta/genética , Caules de Planta/imunologia , Caules de Planta/microbiologia , Locos de Características Quantitativas , República da Coreia , Glycine max/imunologia , Glycine max/microbiologia , Estados Unidos
9.
Mol Plant Microbe Interact ; 28(7): 751-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25650829

RESUMO

Of the over 50 phenotypic resistance genes mapped in lettuce, 25 colocalize to three major resistance clusters (MRC) on chromosomes 1, 2, and 4. Similarly, the majority of candidate resistance genes encoding nucleotide binding-leucine rich repeat (NLR) proteins genetically colocalize with phenotypic resistance loci. MRC1 and MRC4 span over 66 and 63 Mb containing 84 and 21 NLR-encoding genes, respectively, as well as 765 and 627 genes that are not related to NLR genes. Forward and reverse genetic approaches were applied to dissect MRC1 and MRC4. Transgenic lines exhibiting silencing were selected using silencing of ß-glucuronidase as a reporter. Silencing of two of five NLR-encoding gene families resulted in abrogation of nine of 14 tested resistance phenotypes mapping to these two regions. At MRC1, members of the coiled coil-NLR-encoding RGC1 gene family were implicated in host and nonhost resistance through requirement for Dm5/8- and Dm45-mediated resistance to downy mildew caused by Bremia lactucae as well as the hypersensitive response to effectors AvrB, AvrRpm1, and AvrRpt2 of the nonpathogen Pseudomonas syringae. At MRC4, RGC12 family members, which encode toll interleukin receptor-NLR proteins, were implicated in Dm4-, Dm7-, Dm11-, and Dm44-mediated resistance to B. lactucae. Lesions were identified in the sequence of a candidate gene within dm7 loss-of-resistance mutant lines, confirming that RGC12G confers Dm7.


Assuntos
Resistência à Doença/genética , Lactuca/genética , Família Multigênica , Doenças das Plantas/genética , Proteínas de Plantas/genética , Cromossomos de Plantas , Lactuca/microbiologia , Mutação , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Sequências Repetitivas de Aminoácidos
10.
Theor Appl Genet ; 128(5): 827-38, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690715

RESUMO

KEY MESSAGE: A major novel QTL was identified in a recombinant inbred line population derived from a cross of 'Wyandot' × PI 567301B for Fusarium graminearum, a seed and seedling pathogen of soybean. Fusarium graminearum is now recognized as a primary pathogen of soybean, causing root, seed rot and seedling damping-off in North America. In a preliminary screen, 'Wyandot' and PI 567301B were identified with medium and high levels of partial resistance to F. graminearum, respectively. The objective of this study was to characterise resistance towards F. graminearum using 184 recombinant inbred lines (RILs) derived from a cross of 'Wyandot' × PI 567301B. The parents and the RILs of the mapping population were evaluated for resistance towards F. graminearum using the rolled towel assay in a randomized incomplete block design. A genetic map was constructed from 2545 SNP markers and 2 SSR markers by composite interval mapping. One major and one minor QTL were identified on chromosomes 8 and 6, respectively, which explained 38.5 and 8.1 % of the phenotypic variance. The major QTL on chromosome 8 was mapped to a 300 kb size genomic region of the Williams 82 sequence. Annotation of this region indicates that there are 39 genes including the Rhg4 locus for soybean cyst nematode (SCN) resistance. Based on previous screens, PI 567301B is susceptible to SCN. Fine mapping of this locus will assist in cloning these candidate genes as well as identifying DNA markers flanking the QTL that can be used in marker-assisted breeding to develop cultivars with high levels of resistance to F. graminearum.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Glycine max/genética , Locos de Características Quantitativas , Cromossomos de Plantas , Fusarium , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Glycine max/microbiologia
11.
Plant Cell Rep ; 34(1): 133-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326714

RESUMO

KEY MESSAGE: Agroinfiltration is an efficient method to study transgene expression in plant tissue. In this study, sonication followed by vacuum infiltration is shown to increase agroinfiltration-mediated GUS expression in soybean. Agroinfiltration, a valuable tool for rapid analysis of gene function, has been used extensively on leaf tissue of Nicotiana benthamiana and several other plant species. However, the application of this approach for gene functionality studies in soybean has been largely unsuccessful. Improvements in agroinfiltration of many plants have been achieved through a variety of approaches to allow better delivery, penetration and infection of Agrobacterium to interior leaf tissues. In this work, an agroinfiltration approach was developed for transient expression in soybean utilizing sonication followed by vacuum infiltration of intact seedlings. The optimal infiltration buffer, sonication time, and vacuum conditions for agroinfiltration of soybean were evaluated by monitoring expression of an introduced ß-glucuronidase (GUS) reporter gene. The developed method included the use of an infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid sodium salt, 10 mM MgCl2, 100 µM acetosyringone) supplemented with the reducing agent dithiothreitol, with 30 s sonication followed by vacuum infiltration. These techniques were further applied to evaluate five different Agrobacterium strains and six different plant genetic backgrounds. Among the Agrobacterium strains examined, J2 produced the highest levels of GUS activity and 'Peking' was the most responsive genotype.


Assuntos
Agrobacterium/genética , Técnicas de Transferência de Genes , Glucuronidase/genética , Glycine max/genética , Agrobacterium/classificação , Regulação da Expressão Gênica de Plantas , Glucuronidase/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Sonicação , Glycine max/metabolismo , Especificidade da Espécie , Fatores de Tempo , Vácuo
12.
Theor Appl Genet ; 127(2): 429-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24247235

RESUMO

Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect such QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred line (RIL) populations provides improved power to detect QTL through increased population size, recombination, and allelic diversity. However, uniform development and phenotyping of multiple RIL populations can prove difficult. In this study, the effectiveness of joint linkage QTL analysis was evaluated on combinations of two to six nested RIL populations differing in inbreeding generation, phenotypic assay method, and/or marker set used in genotyping. In comparison to linkage analysis in a single population, identification of QTL by joint linkage analysis was only minimally affected by different phenotypic methods used among populations once phenotypic data were standardized. In contrast, genotyping of populations with only partially overlapping sets of markers had a marked negative effect on QTL detection by joint linkage analysis. In total, 16 genetic regions with QTL for partial resistance against P. sojae were identified, including four novel QTL on chromosomes 4, 9, 12, and 16, as well as significant genotype-by-isolate interactions. Resistance alleles from PI 427106 or PI 427105B contributed to a major QTL on chromosome 18, explaining 10-45% of the phenotypic variance. This case study provides guidance on the application of joint linkage QTL analysis of data collected from populations with heterogeneous assay conditions and a genetic framework for partial resistance to P. sojae.


Assuntos
Ligação Genética , Glycine max/microbiologia , Phytophthora/patogenicidade , Locos de Características Quantitativas
13.
Plant Physiol ; 159(4): 1295-308, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696021

RESUMO

Genome-wide structural and gene content variations are hypothesized to drive important phenotypic variation within a species. Structural and gene content variations were assessed among four soybean (Glycine max) genotypes using array hybridization and targeted resequencing. Many chromosomes exhibited relatively low rates of structural variation (SV) among genotypes. However, several regions exhibited both copy number and presence-absence variation, the most prominent found on chromosomes 3, 6, 7, 16, and 18. Interestingly, the regions most enriched for SV were specifically localized to gene-rich regions that harbor clustered multigene families. The most abundant classes of gene families associated with these regions were the nucleotide-binding and receptor-like protein classes, both of which are important for plant biotic defense. The colocalization of SV with plant defense response signal transduction pathways provides insight into the mechanisms of soybean resistance gene evolution and may inform the development of new approaches to resistance gene cloning.


Assuntos
Genes de Plantas/genética , Glycine max/genética , Glycine max/fisiologia , Família Multigênica/genética , Estresse Fisiológico/genética , Cromossomos de Plantas/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Resistência à Doença/genética , Ecótipo , Exoma/genética , Genótipo , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Glycine max/imunologia
14.
Theor Appl Genet ; 126(4): 1121-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354974

RESUMO

Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdemann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the USA. Partial resistance is as effective in managing this disease as single-gene (Rps gene)-mediated resistance and is more durable. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance to P. sojae in PI 398841, which originated from South Korea. A population of 305 F7:8 recombinant inbred lines derived from a cross of OX20-8 × PI 398841 was used to evaluate partial resistance against P. sojae isolate C2S1 using a tray test. Composite interval mapping using a genome-wide logarithm of odd (LOD) threshold detected three QTL on chromosomes 1, 13, and 18, which individually explained 4-16 % of the phenotypic variance. Seven additional QTL, accounting for 2-3 % of phenotypic variance each, were identified using chromosome-wide LOD thresholds. Seven of the ten QTL for resistance to P. sojae were contributed by PI 398841. Seven QTL co-localized with known Rps genes and previously reported QTL for soil-borne root pathogens, isoflavone, and seed oil. Three QTL on chromosomes 3, 13, and 18 co-localized with known Rps genes, but PI 398841 did not exhibit an Rps gene-mediated resistance response following inoculation with 48 different isolates of P. sojae. PI 398841 is potentially a source of novel genes for improving soybean cultivars for partial resistance to P. sojae.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Fenótipo , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética/genética , Genótipo , Escore Lod
15.
Theor Appl Genet ; 126(11): 2737-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959526

RESUMO

Minimally processed salad packs often suffer from discolouration on cut leaf edges within a few days after harvest. This limits shelf life of the product and results in high wastage. Recombinant inbred lines (RILs) derived from a cross between lettuce cvs. Saladin and Iceberg were shown to be suitable for genetic analysis of postharvest discolouration traits in lettuce. An intra-specific linkage map based on this population was generated to enable genetic analysis. A total of 424 markers were assigned to 18 linkage groups covering all nine chromosomes. The linkage map has a total length of 1,040 cM with an average marker distance of 2.4 cM within the linkage groups and was anchored to the ultra-dense, transcript-based consensus map. Significant genetic variation in the postharvest traits 'pinking', 'browning' and 'overall discolouration' was detected among the RILs. Seven significant quantitative trait loci (QTL) were identified for postharvest discolouration traits providing markers linked to the QTL that can be used for marker-assisted selection. Phenotypic stability was confirmed for extreme lines possessing the corresponding QTL parental alleles and which had shown transgressive segregation. This study indicates that a desired phenotype with reduced levels of postharvest discolouration can be achieved by breeding using natural variation.


Assuntos
Mapeamento Cromossômico , Lactuca/crescimento & desenvolvimento , Lactuca/genética , Pigmentação/genética , Característica Quantitativa Herdável , Cruzamentos Genéticos , Ligação Genética , Endogamia , Locos de Características Quantitativas/genética , Especificidade da Espécie
16.
Front Plant Sci ; 14: 1277585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023885

RESUMO

Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.

17.
BMC Plant Biol ; 12: 43, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22448748

RESUMO

BACKGROUND: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). RESULTS: Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. CONCLUSION: As it was shown that the crop contributed QTLs with either a positive or a negative effect on plant vigour, we hypothesize that genomic regions exist where transgenes could preferentially be located in order to mitigate their persistence in natural populations through genetic hitchhiking.


Assuntos
Genoma de Planta , Hibridização Genética , Endogamia , Lactuca/genética , Ligação Genética , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas
18.
Plant Cell ; 21(10): 3368-78, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19855048

RESUMO

Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.


Assuntos
Quimera/metabolismo , Quimera/microbiologia , Lactuca/metabolismo , Lactuca/microbiologia , Necrose/genética , Oomicetos/patogenicidade , Proteínas de Plantas/fisiologia , Quimera/genética , Imunidade Inata/genética , Imunidade Inata/fisiologia , Lactuca/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Temperatura
19.
Theor Appl Genet ; 125(6): 1097-111, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22660630

RESUMO

With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.


Assuntos
Produtos Agrícolas/genética , Secas , Hibridização Genética , Lactuca/genética , Salinidade , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/crescimento & desenvolvimento , Cruzamentos Genéticos , Ligação Genética , Genótipo , Lactuca/crescimento & desenvolvimento , Fenótipo , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Estresse Fisiológico , Transgenes
20.
PLoS One ; 17(6): e0260684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35700182

RESUMO

Global climate change is having a significant effect on agriculture by causing greater precipitation variability and an increased risk of drought. To mitigate these effects, it is important to identify specific traits, adaptations, and germplasm that improve tolerance to soil water deficit. Local varieties, known as landraces, have undergone generations of farmer-mediated selection and can serve as sources of variation, specifically for tolerance to abiotic stress. Landraces can possess local adaptations, where accessions adapted to a particular environment will outperform others grown under the same conditions. We explore adaptations to water deficit in chile pepper landraces from across an environmental gradient in Mexico, a center of crop domestication and diversity, as well in improved varieties bred for the US. In the present study, we evaluated 25 US and Mexico accessions in a greenhouse experiment under well-watered and water deficit conditions and measured morphological, physiological, and agronomic traits. Accession and irrigation regime influenced plant biomass and height, while branching, CO2 assimilation, and fruit weight were all influenced by an interaction between accession and irrigation. A priori group contrasts revealed possible adaptations to water deficit for branching, CO2 assimilation, and plant height associated with geographic origin, domestication level, and pepper species. Additionally, within the Mexican landraces, the number of primary branches had a strong relationship with precipitation from the environment of origin. This work provides insight into chile pepper response to water deficit and adaptation to drought and identifies possibly tolerant germplasm.


Assuntos
Capsicum , Dióxido de Carbono , Domesticação , Melhoramento Vegetal , Verduras , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA