Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 132(4)2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659118

RESUMO

The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/química , Proteínas Aviárias/química , Proteína de Capeamento de Actina CapZ/química , Mecanotransdução Celular , Imagem Individual de Molécula/métodos , Tropomodulina/química , Citoesqueleto de Actina , Actinas/genética , Actinas/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteína de Capeamento de Actina CapZ/genética , Proteína de Capeamento de Actina CapZ/metabolismo , Galinhas , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Microscopia de Força Atômica , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula/instrumentação , Estresse Mecânico , Tropomodulina/genética , Tropomodulina/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(13): 5022-7, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23460697

RESUMO

As a key element in the cytoskeleton, actin filaments are highly dynamic structures that constantly sustain forces. However, the fundamental question of how force regulates actin dynamics is unclear. Using atomic force microscopy force-clamp experiments, we show that tensile force regulates G-actin/G-actin and G-actin/F-actin dissociation kinetics by prolonging bond lifetimes (catch bonds) at a low force range and by shortening bond lifetimes (slip bonds) beyond a threshold. Steered molecular dynamics simulations reveal force-induced formation of new interactions that include a lysine 113(K113):glutamic acid 195 (E195) salt bridge between actin subunits, thus suggesting a molecular basis for actin catch-slip bonds. This structural mechanism is supported by the suppression of the catch bonds by the single-residue replacements K113 to serine (K113S) and E195 to serine (E195S) on yeast actin. These results demonstrate and provide a structural explanation for actin catch-slip bonds, which may provide a mechanoregulatory mechanism to control cell functions by regulating the depolymerization kinetics of force-bearing actin filaments throughout the cytoskeleton.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Substituição de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Galinhas , Humanos , Microscopia de Força Atômica , Mutação de Sentido Incorreto , Coelhos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
J Clin Invest ; 118(9): 3195-207, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18725999

RESUMO

Arterial blood flow enhances glycoprotein Ibalpha (GPIbalpha) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbalpha/vWF bonds first prolonged ("catch") and then shortened ("slip") bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbalpha dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbalpha-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif-13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbalpha on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Doenças de von Willebrand/genética , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Plaquetas/metabolismo , Humanos , Microscopia de Força Atômica , Microesferas , Modelos Biológicos , Conformação Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Estresse Mecânico , Doenças de von Willebrand/metabolismo
4.
Am J Physiol Cell Physiol ; 299(6): C1461-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861469

RESUMO

We examined the effects of fluid shear stress on metallothionein (MT) gene and protein expression and intracellular free zinc in mouse aorta and in human umbilical vein endothelial cells (HUVECs). Immunostaining of the endothelial surface of mouse aorta revealed increased expression of MT protein in the lesser curvature of the aorta relative to the descending thoracic aorta. HUVECs were exposed to high steady shear stress (15 dyn/cm(2)), low steady shear stress (1 dyn/cm(2)), or reversing shear stress (mean of 1 dyn/cm(2), 1 Hz) for 24 h. Gene expression of three MT-1 isoforms, MT-2A, and zinc transporter-1 was upregulated by low steady shear stress and reversing shear stress. HUVECs exposed to 15 dyn/cm(2) had increased levels of free zinc compared with cells under other shear stress regimes and static conditions. The increase in free zinc was partially blocked with an inhibitor of nitric oxide synthesis, suggesting a role for shear stress-induced endothelial nitric oxide synthase activity. Cells subjected to reversing shear stress in zinc-supplemented media (50 µM ZnSO(4)) had increased intracellular free zinc, reduced surface intercellular adhesion molecule-1 expression, and reduced monocyte adhesion compared with cells exposed to reversing shear stress in normal media. The sensitivity of intracellular free zinc to differences in shear stress suggests that intracellular zinc levels are important in the regulation of the endothelium and in the progression of vascular disease.


Assuntos
Células Endoteliais/metabolismo , Metalotioneína/biossíntese , Resistência ao Cisalhamento , Estresse Mecânico , Zinco/metabolismo , Animais , Aorta/metabolismo , Células Cultivadas , Humanos , Molécula 1 de Adesão Intercelular/análise , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Zinco/análise
5.
Am J Physiol Heart Circ Physiol ; 298(2): H367-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19915176

RESUMO

To simulate the effects of shear stress in regions of the vasculature prone to developing atherosclerosis, we subjected human umbilical vein endothelial cells to reversing shear stress to mimic the hemodynamic conditions at the wall of the carotid sinus, a site of complex, reversing blood flow and commonly observed atherosclerosis. We compared the effects of reversing shear stress (time-average: 1 dyn/cm(2), maximum: +11 dyn/cm(2), minimum: -11 dyn/cm(2), 1 Hz), arterial steady shear stress (15 dyn/cm(2)), and low steady shear stress (1 dyn/cm(2)) on gene expression, cell proliferation, and monocyte adhesiveness. Microarray analysis revealed that most differentially expressed genes were similarly regulated by all three shear stress regimens compared with static culture. Comparisons of the three shear stress regimens to each other identified 138 genes regulated by low average shear stress and 22 genes regulated by fluid reversal. Low average shear stress induced increased cell proliferation compared with high shear stress. Only reversing shear stress exposure induced monocyte adhesion. The adhesion of monocytes was partially inhibited by the incubation of endothelial cells with ICAM-1 blocking antibody. Increased heparan sulfate proteoglycan expression was observed on the surface of cells exposed to reversing shear stress. Heparinase III treatment significantly reduced monocyte adhesion. Our results suggest that low steady shear stress is the major impetus for differential gene expression and cell proliferation, whereas reversing flow regulates monocyte adhesion.


Assuntos
Aterosclerose/patologia , Aterosclerose/fisiopatologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiopatologia , Fluxo Sanguíneo Regional/fisiologia , Estresse Mecânico , Aterosclerose/metabolismo , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Veias Umbilicais/fisiopatologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
6.
J Vasc Res ; 47(1): 80-90, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19729955

RESUMO

This study addresses whether pathological levels of cyclic strain activate the c-Myc promoter, leading to c-Myc transcription and downstream gene induction in human umbilical vein endothelial cells (HUVEC) or human aortic endothelial cells (HAEC). mRNA and protein expression of c-Myc under physiological (6-10%) and pathological cyclic strain conditions (20%) were studied. Both c-Myc mRNA and protein expression increased 2-3-fold in HUVEC cyclically strained at 20%. c-Myc protein increased 4-fold in HAEC. In HUVEC, expression of mRNA peaked at 1.5-2 h. Subsequently, the effect of modulating c-Myc on potential downstream gene targets was determined. A small molecular weight compound that binds to and stabilizes the silencer element in the c-Myc promoter attenuates cyclic strain-induced c-Myc transcription by about 50%. This compound also modulates c-Myc downstream gene targets that may be instrumental in induction of vascular disease. Cyclic strain-induced gene expression of vascular endothelial growth factor, proliferating cell nuclear antigen and heat shock protein 60 are attenuated by this compound. These results offer a possible mechanism and promising clinical treatment for vascular diseases initiated by increased cyclic strain.


Assuntos
Células Endoteliais/metabolismo , Mecanotransdução Celular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sítios de Ligação , Células Cultivadas , Chaperonina 60/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo , Estresse Mecânico , Fatores de Tempo , Ativação Transcricional , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
APL Bioeng ; 4(1): 010902, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32095735

RESUMO

Mechanobiology at the cellular level is concerned with what phenotypes that cells exhibit to maintain homeostasis in their normal physiological mechanical environment, as well as what phenotypical changes that cells have to make when their environment is altered. Mechanobiology at the molecular level aims to understand the molecular underpinning of how cells sense, respond to, and adapt to mechanical cues in their environment. In this Perspective, we use our work inspired by and in collaboration with Professor Shu Chien as an example with which we connect the mechanobiology between the cellular and molecular levels. We discuss how physical forces acting on intracellular proteins may impact protein-protein interaction, change protein conformation, crosstalk with biochemical signaling molecules, induce mechanotransduction, and alter the cell structure and function.

8.
Biomech Model Mechanobiol ; 19(5): 1509-1521, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31965350

RESUMO

Formins promote actin assembly and are involved in force-dependent cytoskeletal remodeling. However, how force alters the formin functions still needs to be investigated. Here, using atomic force microscopy and biomembrane force probe, we investigated how mechanical force affects formin-mediated actin interactions at the level of single molecular complexes. The biophysical parameters of G-actin/G-actin (GG) or G-actin/F-actin (GF) interactions were measured under force loading in the absence or presence of two C-terminal fragments of the mouse formin mDia1: mDia1Ct that contains formin homology 2 domain (FH2) and diaphanous autoregulatory domain (DAD) and mDia1Ct-ΔDAD that contains only FH2. Under force-free conditions, neither association nor dissociation kinetics of GG and GF interactions were significantly affected by mDia1Ct or mDia1Ct-ΔDAD. Under tensile forces (0-7 pN), the average lifetimes of these bonds were prolonged and molecular complexes were stiffened in the presence of mDia1Ct, indicating mDia1Ct association kinetically stabilizes and mechanically strengthens bonds of the dimer and at the end of the F-actin under force. Interestingly, mDia1Ct-ΔDAD prolonged the lifetime of GF but not GG bond under force, suggesting the DAD domain is critical for mDia1Ct to strengthen GG interaction. These data unravel the mechanochemical coupling in formin-induced actin assembly and provide evidence to understand the initiation of formin-mediated actin elongation and nucleation.


Assuntos
Actinas/metabolismo , Forminas/metabolismo , Animais , Fenômenos Biomecânicos , Membrana Celular/metabolismo , Cinética , Camundongos , Modelos Biológicos , Ligação Proteica
9.
J Leukoc Biol ; 81(3): 686-95, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17164427

RESUMO

Transendothelial migration of neutrophils induces phenotypic changes that influence the interactions of neutrophils with extravascular tissue components. To assess the influence of transmigration on neutrophil chemokinetic motility, we used polyethylene glycol hydrogels covalently modified with specific peptide sequences relevant to extracellular matrix proteins. We evaluated fMLP-stimulated human neutrophil motility on peptides Arg-Gly-Asp-Ser (RGDS) and TMKIIPFNRTLIGG (P2), alone and in combination. RGDS is a bioactive sequence found in a number of proteins, and P2 is a membrane-activated complex-1 (Mac-1) ligand located in the gamma-chain of the fibrinogen protein. We evaluated, via video microscopy, cell motility by measuring cell displacement from origin and total accumulated distance traveled and then calculated average velocity. Results indicate that although adhesion and shape change were supported by hydrogels containing RGD alone, motility was not. Mac-1-dependent motility was supported on hydrogels containing P2 alone. Motility was enhanced through combined presentation of RGD and P2, engaging Mac-1, alpha(V)beta(3), and beta(1) integrins. Naïve neutrophil motility on combined peptide substrates was dependent on Mac-1, and alpha(4)beta(1) while alpha(6)beta(1) contributed to speed and linear movement. Transmigrated neutrophil motility was dependent on alpha(v)beta(3) and alpha(5)beta(1), and alpha(4)beta(1), alpha(6)beta(1), and Mac-1 contributed to speed and linear motion. Together, the data demonstrate that efficient neutrophil migration, dependent on multi-integrin interaction, is enhanced after transendothelial migration.


Assuntos
Quimiotaxia de Leucócito/imunologia , Células Endoteliais/imunologia , Integrinas/imunologia , Neutrófilos/imunologia , Movimento Celular/imunologia , Células Cultivadas , Células Endoteliais/citologia , Humanos , Hidrogéis , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Relação Estrutura-Atividade
10.
Biorheology ; 43(5): 681-91, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17047284

RESUMO

Endothelial cells synthesize and secrete von Willebrand factor (VWF) multimers, including unusually large forms (ULVWF), which are usually cleaved into smaller multimers found in normal plasma (P-VWF). Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic disorder characterized by systemic attachment of platelets to inadequately cleaved ULVWF multimers. We have compared ULVWF and P-VWF in their capacity to become immobilized onto surfaces in vitro and their ability to mediate platelet adhesion. We have also used functional assays to directly compare ULVWF forms with purified P-VWF in mediating platelet aggregation in solution. At comparable concentrations, ULVWF is more effectively adsorbed onto glass surfaces than P-VWF and supports increased platelet adhesion. ULVWF is also significantly more potent than P-VWF in mediating both shear-induced platelet aggregation and ristocetin-mediated platelet agglutination.


Assuntos
Endotélio Vascular/citologia , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Fator de von Willebrand/fisiologia , Adulto , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Humanos , Peso Molecular , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Púrpura Trombocitopênica Trombótica/sangue , Ristocetina/farmacologia , Estresse Mecânico , Fator de von Willebrand/química
11.
Cancer Res ; 62(18): 5301-7, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12235000

RESUMO

We developed a fully automated three-dimensional cell tracking system that quantified the effect of extracellular matrix components on the infiltration and migration of tumor cells. The three-dimensional trajectories of two highly invasive cell lines, the human HT-1080 fibrosarcoma and the human MDA-MB-231 adenocarcinoma, were determined for long-term infiltration in plain or Matrigel-containing collagen type I gels. We modeled the trajectories with a novel formulation of the continuous Markov chain model that can distinguish between the tendencies for infiltration or lateral motion. Parameters such as the speed of subpopulations, the persistence of motion in certain directions, the turning frequency of the cells, the ultimate direction of motion, and the cell distribution with the infiltration depth were obtained to quantify the migration and infiltration at the cellular level. Distinct migratory and infiltration phenotypes were identified for the two cell types that were significantly dependent on gel composition. The HT-1080 cell line expressed a high motility phenotype on the plain collagen gel surface. The Matrigel-containing gel significantly enhanced the infiltration and the turning frequency of the HT-1080 cells. This study shows that tumor cell infiltration and migration are dynamic processes that depend significantly on the cell type and the microenvironment.


Assuntos
Adenocarcinoma/patologia , Movimento Celular/fisiologia , Colágeno Tipo I , Fibrossarcoma/patologia , Colágeno , Interpretação Estatística de Dados , Combinação de Medicamentos , Matriz Extracelular/fisiologia , Humanos , Laminina , Cadeias de Markov , Fenótipo , Proteoglicanas , Células Tumorais Cultivadas
12.
Sci Rep ; 6: 35058, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731359

RESUMO

The dynamic turnover of the actin cytoskeleton is regulated cooperatively by force and biochemical signaling. We previously demonstrated that actin depolymerization under force is governed by catch-slip bonds mediated by force-induced K113:E195 salt-bridges. Yet, the biochemical regulation as well as the functional significance of actin catch bonds has not been elucidated. Using AFM force-clamp experiments, we show that formin controlled by RhoA switches the actin catch-slip bonds to slip-only bonds. SMD simulations reveal that the force does not induce the K113:E195 interaction when formin binds to actin K118 and E117 residues located at the helical segment extending to K113. Actin catch-slip bonds are suppressed by single residue replacements K113E and E195K that interrupt the force-induced K113:E195 interaction; and this suppression is rescued by a K113E/E195K double mutant (E/K) restoring the interaction in the opposite orientation. These results support the biological significance of actin catch bonds, as they corroborate reported observations that RhoA and formin switch force-induced actin cytoskeleton alignment and that either K113E or E195K induces yeast cell growth defects rescued by E/K. Our study demonstrates how the mechano-regulation of actin dynamics is modulated by biochemical signaling molecules, and suggests that actin catch bonds may be important in cell functions.


Assuntos
Actinas/química , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Lisina/genética , Proteínas dos Microfilamentos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Proteína rhoA de Ligação ao GTP/química
13.
Physiol Genomics ; 21(1): 124-30, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15632272

RESUMO

Microarrays were utilized to determine gene expression of vascular endothelial cells (ECs) subjected to mechanical stretch for insight into the role of strain in vascular pathophysiology. Over 4,000 genes were screened for expression changes resulting from cyclic strain (10%, 1 Hz) of human umbilical vein ECs for 6 and 24 h. Comparison of t-statistics and adjusted P values identified genes having significantly different expression between strained and static cells but not between strained and motion control. Relative to static, 6 h of cyclic stretch upregulated two genes and downregulated two genes, whereas 24 h of cyclic stretch upregulated eight genes but downregulated no genes. However, incorporating the motion control revealed that fluid agitation over the cells, rather than strain, is the primary regulator of differential expression. Furthermore, no gene exceeded a threefold change when comparing cyclic strain to either static or motion control. Quantitative real-time polymerase chain reaction confirmed the dominance of fluid agitation in gene regulation with the exception of heat shock protein 10 at 24 h and plasminogen activator inhibitor 1 at 6 h. Taken together, the small number of differentially expressed genes and their low fold expression levels indicate that cyclic strain is a weak inducer of gene regulation in ECs. However, many of the differentially expressed genes possess antioxidant properties, suggesting that oxidative mechanisms direct EC adaptation to cyclic stretch.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Antioxidantes/metabolismo , Células Cultivadas , DNA Complementar/metabolismo , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Humanos , Hipertensão/metabolismo , Modelos Estatísticos , Movimento , Ativadores de Plasminogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Mecânico , Fatores de Tempo , Veias Umbilicais/metabolismo , Regulação para Cima
14.
Tissue Eng ; 11(3-4): 567-84, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15869435

RESUMO

A number of pathological entities and surgical interventions could benefit from therapeutic stimulation of new blood vessel formation. Although strategies designed for promoting neovascularization have shown promise in preclinical models, translation to human application has met with limited success when angiogenesis is used as the single therapeutic mechanism. While clinical protocols continue to be optimized, a number of exciting new approaches are being developed. Bioengineering has played an important role in the progress of many of these innovative new strategies. In this review, we present a general outline of therapeutic neovascularization, with an emphasis on investigations using engineering principles to address this vexing clinical problem. In addition, we identify some limitations and suggest areas for future research.


Assuntos
Engenharia Biomédica/métodos , Prótese Vascular , Vasos Sanguíneos/crescimento & desenvolvimento , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/transplante , Isquemia/terapia , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Indutores da Angiogênese/administração & dosagem , Animais , Engenharia Biomédica/tendências , Bioprótese , Vasos Sanguíneos/citologia , Células Endoteliais/citologia , Humanos , Modelos Cardiovasculares , Neovascularização Fisiológica/efeitos dos fármacos
15.
J Histochem Cytochem ; 51(5): 575-84, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12704205

RESUMO

The increased use of immunohistochemistry (IHC) in both clinical and basic research settings has led to the development of techniques for acquiring quantitative information from immunostains. Staining correlates with absolute protein levels and has been investigated as a clinical tool for patient diagnosis and prognosis. For these reasons, automated imaging methods have been developed in an attempt to standardize IHC analysis. We propose a novel imaging technique in which brightfield images of diaminobenzidene (DAB)-labeled antigens are converted to normalized blue images, allowing automated identification of positively stained tissue. A statistical analysis compared our method with seven previously published imaging techniques by measuring each one's agreement with manual analysis by two observers. Eighteen DAB-stained images showing a range of protein levels were used. Accuracy was assessed by calculating the percentage of pixels misclassified using each technique compared with a manual standard. Bland-Altman analysis was then used to show the extent to which misclassification affected staining quantification. Many of the techniques were inconsistent in classifying DAB staining due to background interference, but our method was statistically the most accurate and consistent across all staining levels.


Assuntos
Benzidinas , Imuno-Histoquímica/métodos , Animais , Corantes , Epitélio/química , Gengiva/química , Substâncias de Crescimento/análise , Processamento de Imagem Assistida por Computador , Coelhos , Extração Dentária , Cicatrização
16.
Thromb Haemost ; 88(5): 817-21, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12428100

RESUMO

Arterial stenosis results in a complex pattern of blood flow containing an extremely fast flow in the throat of stenosis and a post-stenosis low flow. The fast flow generates high shear stress that has been demonstrated in vitro to activate and aggregate platelets. One potential problem of these in vitro studies is that platelets are invariably exposed to a high shear stress for a period that is significantly longer than they would have experienced in vivo. More importantly, the role of the post-stenosis low flow in platelet activation and aggregation has not been determined. By exposing platelets to a shear profile that contains both high and low shear segments, we found that platelets aggregate when they are exposed to a high shear stress of 100 dyn/cm(2) for as short as 2.5 s, a period that is significantly shorter than those previously reported (30-120 s). Platelet aggregation under this condition requires a low shear exposure immediately after a high shear pulse, suggesting that post-stenosis low flow enhances platelet aggregation. Furthermore, platelet aggregation under this condition is not activation-dependent because the CD62P expression of sheared platelets is significantly less than that of platelets treated with ADP. Based on these findings, we propose that shear-induced platelet aggregation may be a process of mechanical crosslinking of platelets, requiring minimal platelet activation. This process may function as a protective mechanism to prevent in vivo irreversible platelet activation and aggregation under temporary high shear.


Assuntos
Hemorreologia , Ativação Plaquetária/fisiologia , Difosfato de Adenosina/farmacologia , Constrição Patológica/sangue , Humanos , Cinética , Modelos Cardiovasculares , Selectina-P/análise , Agregação Plaquetária/fisiologia , Estresse Mecânico
17.
Tissue Eng ; 10(11-12): 1775-86, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15684686

RESUMO

This study employs tissue-engineering technologies to evaluate neutrophil interactions with extracellular matrix (ECM)-mimetic peptides. We have used a polyethylene glycol (PEG) diacrylate derivative to form a hydrogel as a biologically inert surface. Covalent attachment of bioactive moieties to the hydrogel makes it bioactive. The goal is to define the mechanisms by which these moieties influence the interactions of neutrophils with this bioactive hydrogel, and thus understand the likely effects of similar ligands in the ECM. The current experiments analyze the interactions of isolated human neutrophils with PEG hydrogels modified with Arg-Gly-Asp-Ser (RGDS), a known ligand for some beta(1) and beta(3) integrins, and Thr-Met-Lys-Ile-Ile-Pro-Phe-Asn-Arg-Leu-Thr-Ile-Gly-Gly (TMKIIPFNRLTIGG), a ligand for Mac-1, a beta(2) integrin. Our results demonstrate that neutrophils, independent of chemotactic stimulation, show little ability to adhere to unmodified PEG hydrogels. However, cell adhesion and spreading are robust on peptide-modified hydrogels. Incorporating distinct bioactive peptides, either alone or in combination, has enabled recognition of differential functions of alpha(v)beta(3), beta(1), and beta(2) integrins on neutrophil adhesion and spreading. Combined interactions result in activity that differs markedly from that seen with either integrin independently engaged. This model allows investigation of specific ligand-induced leukocyte functions and the development of engineered matrices with defined bioactive properties.


Assuntos
Cadeias beta de Integrinas/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Oligopeptídeos/química , Oligopeptídeos/imunologia , Polietilenoglicóis/química , Acrilatos/química , Sítios de Ligação , Adesão Celular/imunologia , Movimento Celular/imunologia , Células Cultivadas , Humanos , Hidrogéis/química , Integrinas , Ativação de Neutrófilo/imunologia , Ligação Proteica , Engenharia Tecidual/métodos
18.
Endothelium ; 11(1): 1-10, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15203874

RESUMO

Third-passage human umbilical vein endothelial cells (HUVECs) or fifth-passage human aortic endothelial cells (HAECs) were subjected to 25 dynes/cm(2) for 24 h in a parallel-plate flow system. Matched control cells were maintained in static conditions. Total RNA was isolated and pooled from six to eight slides per experiment. Changes in gene expression were analyzed by Northern blots and reverse transcriptase-polymerase chain reaction. Fold changes were normalized to glyceraldehyde phosphate dehydrogenase (GAPDH) values. In HUVECs, arterial levels of shear stress increased mRNA expression of Cytochrome P450 1A1 (CYP1A1) 10.8 +/- 2.1-fold, and CYP1B1 23.1 +/- 3.7-fold; whereas connective tissue growth factor (CTGF) expression was unchanged and endothelin-1 (ET-1) mRNA expression was decreased 0.7 +/- 0.05-fold. The authors determined whether these changes were induced by beta-naphthoflavone, a polyaromatic hydrocarbon, and whether they occurred in HAECs. beta-Naphthoflavone up-regulated CYP1A1 18.3 +/- 4.2-fold, and CYP1B1 4.1 +/- 0.3-fold in HUVECs. Shear stress up-regulated CYP1A1 6.3 +/- 0.4-fold and CYP1B1 51.1 +/- 2.1-fold in HAECs. In addition, the authors examined CYP1A1 and CYP1B1 proteins translated from these genes. Experiments identical to those described above were performed and the cells harvested for protein identification by Western blot of CYP1A1 and CYP1B1. Protein levels of CYP1A1 in HUVECs were up-regulated under shear stress, whereas protein levels of CYP1B1 were not.


Assuntos
Citocromo P-450 CYP1A1/genética , Sistema Enzimático do Citocromo P-450/genética , Células Endoteliais/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Regulação para Cima/fisiologia , Hidrocarboneto de Aril Hidroxilases , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo , Meios de Cultivo Condicionados/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotelina-1/genética , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Imediatamente Precoces/genética , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estresse Mecânico , Regulação para Cima/efeitos dos fármacos , beta-Naftoflavona/farmacologia
19.
Thromb Res ; 111(3): 171-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14678816

RESUMO

BACKGROUND: Binding of platelet P-selectin to P-selectin glycoprotein ligand 1 (PSGL-1) is an initial event in the interactions between platelets and monocytes. Platelet-monocyte complexes (PMCs) have been implicated in several vascular disease processes, including acute coronary syndromes (ACS) and complications after percutaneous coronary intervention (PCI). We investigated the effect of ex vivo blockade of PSGL-1, alone and in combination with blockade of the alphaMbeta(2) (Mac-1) and alpha(IIb)beta(3) (GP IIb/IIIa) integrins, on PMC formation. METHODS AND RESULTS: Dual-label flow cytometry was used to detect PMCs in the blood of 10 volunteers and 10 patients undergoing PCI who received intravenous GP IIb/IIIa antagonists. PSGL-1 blockade, both prior to and after platelet stimulation, markedly reduced the formation of PMCs. Concomitant ex vivo blockade of the alphaMbeta(2) and alpha(IIb)beta(3) integrins did not result in further decreases of PMCs compared to PSGL-1 blockade alone. Antagonism of PSGL-1 also led to near elimination of leukocyte-platelet interactions under flowing conditions. CONCLUSION: Blockade of PSGL-1 alone is sufficient to inhibit and reverse the formation of PMCs following platelet stimulation. Concurrent antagonism of PSGL-1 and the alpha(IIb)beta(3) and alphaMbeta(2) integrins was not more effective than inhibition of PSGL-1 alone. These results suggest that platelet-monocyte complex formation is mostly dependent on PSGL-1.


Assuntos
Plaquetas/metabolismo , Antígeno de Macrófago 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Monócitos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adulto , Anticorpos Monoclonais/metabolismo , Citometria de Fluxo , Humanos , Inflamação , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Selectina-P/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Fatores de Tempo
20.
Biorheology ; 40(1-3): 5-11, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12454381

RESUMO

The cDNA microarray is an extremely beneficial tool for study of differential gene expression in the cardiovascular system. This technique is used in many different applications including drug discovery, environmental science, and the effects of mechanical forces on vascular cell phenotype. The paper reviews work by others, and describes our study on effects of shear stress on vascular endothelial cells. These microarray studies verified earlier findings using Northern and polymerase chain reaction (PCR) analyses in this area; and also found previously unidentified differentially expressed genes, leading to new hypotheses regarding how cells and tissues respond to biochemical and mechanical stimuli.


Assuntos
Endotélio Vascular/fisiologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA