Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 95(2): 314-324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921042

RESUMO

OBJECTIVE: Exposure to repetitive head impacts (RHI) is associated with later-life cognitive symptoms and neuropathologies, including chronic traumatic encephalopathy (CTE). Cognitive decline in community cohorts is often due to multiple pathologies; however, the frequency and contributions of these pathologies to cognitive impairment in people exposed to RHI are unknown. Here, we examined the relative contributions of 13 neuropathologies to cognitive symptoms and dementia in RHI-exposed brain donors. METHODS: Neuropathologists examined brain tissue from 571 RHI-exposed donors and assessed for the presence of 13 neuropathologies, including CTE, Alzheimer disease (AD), Lewy body disease (LBD), and transactive response DNA-binding protein 43 (TDP-43) inclusions. Cognitive status was assessed by presence of dementia, Functional Activities Questionnaire, and Cognitive Difficulties Scale. Spearman rho was calculated to assess intercorrelation of pathologies. Additionally, frequencies of pathological co-occurrence were compared to a simulated distribution assuming no intercorrelation. Logistic and linear regressions tested associations between neuropathologies and dementia status and cognitive scale scores. RESULTS: The sample age range was 18-97 years (median = 65.0, interquartile range = 46.0-76.0). Of the donors, 77.2% had at least one moderate-severe neurodegenerative or cerebrovascular pathology. Stage III-IV CTE was the most common neurodegenerative disease (43.1%), followed by TDP-43 pathology, AD, and hippocampal sclerosis. Neuropathologies were intercorrelated, and there were fewer unique combinations than expected if pathologies were independent (p < 0.001). The greatest contributors to dementia were AD, neocortical LBD, hippocampal sclerosis, cerebral amyloid angiopathy, and CTE. INTERPRETATION: In this sample of RHI-exposed brain donors with wide-ranging ages, multiple neuropathologies were common and correlated. Mixed neuropathologies, including CTE, underlie cognitive impairment in contact sport athletes. ANN NEUROL 2024;95:314-324.


Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Esclerose Hipocampal , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doenças Neurodegenerativas/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/patologia , Encefalopatia Traumática Crônica/patologia , Proteínas de Ligação a DNA/metabolismo , Cognição
2.
Acta Neuropathol ; 147(1): 45, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407651

RESUMO

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p =  0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.


Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Doenças Neurodegenerativas , Humanos , Estudos Transversais , Encéfalo
3.
Alzheimers Dement ; 20(3): 1827-1838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134231

RESUMO

INTRODUCTION: Tau is a key pathology in chronic traumatic encephalopathy (CTE). Here, we report our findings in tau positron emission tomography (PET) measurements from the DIAGNOSE CTE Research Project. METHOD: We compare flortaucipir PET measures from 104 former professional players (PRO), 58 former college football players (COL), and 56 same-age men without exposure to repetitive head impacts (RHI) or traumatic brain injury (unexposed [UE]); characterize their associations with RHI exposure; and compare players who did or did not meet diagnostic criteria for traumatic encephalopathy syndrome (TES). RESULTS: Significantly elevated flortaucipir uptake was observed in former football players (PRO+COL) in prespecified regions (p < 0.05). Association between regional flortaucipir uptake and estimated cumulative head impact exposure was only observed in the superior frontal region in former players over 60 years old. Flortaucipir PET was not able to differentiate TES groups. DISCUSSION: Additional studies are needed to further understand tau pathology in CTE and other individuals with a history of RHI.


Assuntos
Lesões Encefálicas Traumáticas , Carbolinas , Encefalopatia Traumática Crônica , Futebol Americano , Masculino , Humanos , Pessoa de Meia-Idade , Encefalopatia Traumática Crônica/diagnóstico por imagem , Encefalopatia Traumática Crônica/patologia , Futebol Americano/lesões , Proteínas tau , Tomografia por Emissão de Pósitrons , Lesões Encefálicas Traumáticas/complicações
4.
Acta Neuropathol ; 145(4): 371-394, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759368

RESUMO

Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.


Assuntos
Encefalopatia Traumática Crônica , Futebol Americano , Tauopatias , Animais , Bovinos , Humanos , Masculino , Austrália , Encéfalo/patologia , Canadá , Encefalopatia Traumática Crônica/patologia , Proteínas tau/metabolismo
5.
Acta Neuropathol ; 146(6): 785-802, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815677

RESUMO

Understanding age acceleration, the discordance between biological and chronological age, in the brain can reveal mechanistic insights into normal physiology as well as elucidate pathological determinants of age-related functional decline and identify early disease changes in the context of Alzheimer's and other disorders. Histopathological whole slide images provide a wealth of pathologic data on the cellular level that can be leveraged to build deep learning models to assess age acceleration. Here, we used a collection of digitized human post-mortem hippocampal sections to develop a histological brain age estimation model. Our model predicted brain age within a mean absolute error of 5.45 ± 0.22 years, with attention weights corresponding to neuroanatomical regions vulnerable to age-related changes. We found that histopathologic brain age acceleration had significant associations with clinical and pathologic outcomes that were not found with epigenetic based measures. Our results indicate that histopathologic brain age is a powerful, independent metric for understanding factors that contribute to brain aging.


Assuntos
Envelhecimento , Encéfalo , Humanos , Pré-Escolar , Envelhecimento/patologia , Encéfalo/patologia , Epigenômica , Aceleração , Autopsia , Epigênese Genética , Metilação de DNA
6.
Acta Neuropathol ; 145(4): 395-408, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681782

RESUMO

Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.


Assuntos
Encefalopatia Traumática Crônica , Esclerose Hipocampal , Doenças Neurodegenerativas , Proteinopatias TDP-43 , Humanos , Idoso , Encefalopatia Traumática Crônica/patologia , Envelhecimento , Proteinopatias TDP-43/patologia , Proteínas de Ligação a DNA/metabolismo
7.
Acta Neuropathol ; 147(1): 5, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159140

RESUMO

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas tau , Autopsia , Biomarcadores
8.
Eur J Nucl Med Mol Imaging ; 50(2): 435-452, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152064

RESUMO

PURPOSE: Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS: Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS: Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS: Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Futebol Americano , Humanos , Doença de Alzheimer/metabolismo , Autopsia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Encefalopatia Traumática Crônica/diagnóstico por imagem , Encefalopatia Traumática Crônica/etiologia , Encefalopatia Traumática Crônica/metabolismo , Morte , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
9.
Brain ; 145(10): 3546-3557, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35554506

RESUMO

Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau181) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau181 as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau181 between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau181 was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau181 concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau181 levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau181 and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau181 levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau181 concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau181 as a scalable biomarker for the detection of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Humanos , Doença de Alzheimer/patologia , Proteínas tau , Peptídeos beta-Amiloides , Autopsia , Biomarcadores , Treonina
10.
Alzheimers Dement ; 19(4): 1260-1273, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35996231

RESUMO

INTRODUCTION: The presentation, risk factors, and etiologies of white matter hyperintensities (WMH) in people exposed to repetitive head impacts are unknown. We examined the burden and distribution of WMH, and their association with years of play, age of first exposure, and clinical function in former American football players. METHODS: A total of 149 former football players and 53 asymptomatic unexposed participants (all men, 45-74 years) completed fluid-attenuated inversion recovery magnetic resonance imaging, neuropsychological testing, and self-report neuropsychiatric measures. Lesion Segmentation Toolbox estimated WMH. Analyses were performed in the total sample and stratified by age 60. RESULTS: In older but not younger participants, former football players had greater total, frontal, temporal, and parietal log-WMH compared to asymptomatic unexposed men. In older but not younger former football players, greater log-WMH was associated with younger age of first exposure to football and worse executive function. DISCUSSION: In older former football players, WMH may have unique presentations, risk factors, and etiologies. HIGHLIGHTS: Older but not younger former football players had greater total, frontal, temporal, and parietal lobe white matter hyperintensities (WMH) compared to same-age asymptomatic unexposed men. Younger age of first exposure to football was associated with greater WMH in older but not younger former American football players. In former football players, greater WMH was associated with worse executive function and verbal memory.


Assuntos
Futebol Americano , Substância Branca , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos , Função Executiva
11.
Am J Epidemiol ; 191(8): 1429-1443, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35434739

RESUMO

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts such as those from American football. Our understanding of this association is based on research in autopsied brains, since CTE can only be diagnosed postmortem. Such studies are susceptible to selection bias, which needs to be accounted for to ensure a generalizable estimate of the association between repetitive head impacts and CTE. We evaluated the relationship between level of American football playing and CTE diagnosis after adjusting for selection bias. The sample included 290 deceased male former American football players who donated their brains to the Veterans Affairs-Boston University-Concussion Legacy Foundation (VA-BU-CLF) Brain Bank between 2008 and 2019. After adjustment for selection bias, college-level and professional football players had 2.38 (95% simulation interval (SI): 1.16, 5.94) and 2.47 (95% SI: 1.46, 4.79) times the risk of being diagnosed with CTE as high-school-level players, respectively; these estimates are larger than estimates with no selection bias adjustment. Since CTE is currently diagnosed only postmortem, we additionally provide plausible scenarios for CTE risk ratios for each level of play during the former players' lifetime. This study provides further evidence to support a dose-response relationship between American football playing and CTE.


Assuntos
Concussão Encefálica , Encefalopatia Traumática Crônica , Futebol Americano , Doenças Neurodegenerativas , Encéfalo , Encefalopatia Traumática Crônica/diagnóstico , Humanos , Masculino
12.
J Neuroinflammation ; 19(1): 278, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403052

RESUMO

BACKGROUND: Tauopathies are a group of neurodegenerative diseases where there is pathologic accumulation of hyperphosphorylated tau protein (ptau). The most common tauopathy is Alzheimer's disease (AD), but chronic traumatic encephalopathy (CTE), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD) are significant health risks as well. Currently, it is unclear what specific molecular factors might drive each distinct disease and represent therapeutic targets. Additionally, there is a lack of biomarkers that can differentiate each disease in life. Recent work has suggested that neuroinflammatory changes might be specific among distinct diseases and offers a novel resource for mechanistic targets and biomarker candidates. METHODS: To better examine each tauopathy, a 71 immune-related protein multiplex ELISA panel was utilized to analyze anterior cingulate grey matter from 127 individuals neuropathologically diagnosed with AD, CTE, PSP, CBD, and AGD. A partial least square regression analysis was carried out to perform unbiased clustering and identify proteins that are distinctly correlated with each tauopathy correcting for age and gender. Receiver operator characteristic and binary logistic regression analyses were then used to examine the ability of each candidate protein to distinguish diseases. Validation in postmortem cerebrospinal fluid (CSF) from 15 AD and 14 CTE cases was performed to determine if candidate proteins could act as possible novel biomarkers. RESULTS: Five clusters of immune proteins were identified and compared to each tauopathy to determine if clusters were specific to distinct disease. Each cluster was found to correlate with either CTE, AD, PSP, CBD, or AGD. When examining which proteins were the strongest driver of each cluster, it was observed the most distinctive protein for CTE was CCL21, AD was FLT3L, and PSP was IL13. Individual proteins that were specific to CBD and AGD were not observed. CCL21 was observed to be elevated in CTE CSF compared to AD cases (p = 0.02), further validating the use as possible biomarkers. Sub-analyses for male only cases confirmed the results were not skewed by gender differences. CONCLUSIONS: Overall, these results highlight that different neuroinflammatory responses might underlie unique mechanisms in related neurodegenerative pathologies. Additionally, the use of distinct neuroinflammatory signatures could help differentiate between tauopathies and act as novel biomarker candidate to increase specificity for in-life diagnoses.


Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Masculino , Tauopatias/diagnóstico , Tauopatias/patologia , Doença de Alzheimer/patologia , Paralisia Supranuclear Progressiva/diagnóstico , Biomarcadores
13.
Acta Neuropathol ; 144(4): 603-614, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947184

RESUMO

Neuropathologic criteria for progressive supranuclear palsy (PSP) proposed by a National Institute of Neurological Disorders and Stroke (NINDS) working group were published in 1994 and based on the presence of neurofibrillary tangles in basal ganglia and brainstem. These criteria did not stipulate detection methods or incorporate glial tau pathology. In this study, a group of 14 expert neuropathologists scored digital slides from 10 brain regions stained with hematoxylin and eosin (H&E) and phosphorylated tau (AT8) immunohistochemistry. The cases included 15 typical and atypical PSP cases and 10 other tauopathies. Blinded to clinical and neuropathological information, raters provided a categorical diagnosis (PSP or not-PSP) based upon provisional criteria that required neurofibrillary tangles or pretangles in two of three regions (substantia nigra, subthalamic nucleus, globus pallidus) and tufted astrocytes in one of two regions (peri-Rolandic cortices, putamen). The criteria showed high sensitivity (0.97) and specificity (0.91), as well as almost perfect inter-rater reliability for diagnosing PSP and differentiating it from other tauopathies (Fleiss kappa 0.826). Most cases (17/25) had 100% agreement across all 14 raters. The Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of PSP feature a simplified diagnostic algorithm based on phosphorylated tau immunohistochemistry and incorporate tufted astrocytes as an essential diagnostic feature.


Assuntos
Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Emaranhados Neurofibrilares/patologia , Neuropatologia , Reprodutibilidade dos Testes , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/patologia , Tauopatias/diagnóstico , Tauopatias/patologia , Proteínas tau
14.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719765

RESUMO

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Assuntos
Proteínas de Homeodomínio/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Estudos de Coortes , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
15.
Exp Eye Res ; 221: 108974, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202705

RESUMO

Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-ß (Aß) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aß neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aß deposition, ß-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aß molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aß deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aß microaggregates also contain αB-crystallin and scatter light, thus linking Aß pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aß lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aß accumulation and Aß amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aß production in brain and lens. Here we report identification of AD-related human Aß (hAß) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAß peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAß peptides, and develop hAß molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aß supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAß in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAß generation in the lens. In vitro studies showed that hAß promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aß pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aß pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aß pathology outside the brain and point to lens Aß as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.


Assuntos
Doença de Alzheimer , Catarata , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Catarata/patologia , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
16.
Muscle Nerve ; 66(2): 167-174, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585776

RESUMO

INTRODUCTION/AIMS: The amyotrophic lateral sclerosis (ALS) functional rating scale-revised (ALSFRS-R) is commonly used to track ALS disease progression; however, there are gaps in the literature regarding the extent to which the ALSFRS-R relates to underlying central nervous system (CNS) pathology. The current study explored the association between ALSFRS-R (total and subdomain) scores and postmortem neuropathology (both ALS-specific and comorbid disease). METHODS: Within our sample of 93 military veterans with autopsy-confirmed ALS, we utilized hierarchical cluster analysis (HCA) to identify discrete profiles of motor dysfunction based on ALSFRS-R subdomain scores. We examined whether emergent clusters were associated with neuropathology. Separate analyses of variance and covariance with post-hoc comparisons were performed to examine relevant cluster differences. RESULTS: Analyses revealed significant correlations between ALSFRS-R total and subdomain scores with some, but not all, neuropathological variables. The HCA illustrated three groups: Cluster 1-predominantly diffuse functional impairment; Cluster 2-spared respiratory/bulbar and impaired motor function; and Cluster 3-spared bulbar and impaired respiratory, and fine and gross motor function. Individuals in Cluster 1 (and to a lesser degree, Cluster 3) exhibited greater accumulation of ALS-specific neuropathology and less comorbid neuropathology than those in Cluster 2. DISCUSSION: These results suggest that discrete patterns of motor dysfunction based on ALSFRS-R subdomain scores are related to postmortem neuropathology. Findings support use of ALSFRS-R subdomain scores to capture the heterogeneity of clinical presentation and disease progression in ALS, and may assist researchers in identifying endophenotypes for separate assessment in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Veteranos , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/epidemiologia , Encéfalo , Progressão da Doença , Humanos , Índice de Gravidade de Doença
17.
Alzheimers Dement ; 18(8): 1511-1522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34854540

RESUMO

INTRODUCTION: Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI) typically sustained by contact sport athletes. Post-translation modifications to tau in CTE have not been well delineated or compared to Alzheimer's disease (AD). METHODS: We measured phosphorylated tau epitopes within dorsolateral frontal cortex from post mortem brains with neither CTE nor AD (n = 108), CTE (n = 109), AD (n = 223), and both CTE and AD (n = 33). RESULTS: Levels of hyperphosphorylated tau (p-tau)202 , p-tau231 , and p-tau396 were significantly increased in CTE. Total years of RHI exposure was significantly associated with increased p-tau202 levels (P = .001), but not p-tau396 . Instead, p-tau396 was most closely related to amyloid beta (Aß)1-42 levels (P < .001). The p-tau202 :p-tau396 ratio was significantly increased in early and late CTE compared to AD. DISCUSSION: In frontal cortex, p-tau202 is the most upregulated p-tau species in CTE, while p-tau396 is most increased in AD. p-tau202 and p-tau396 measurements may aid in developing biomarkers for disease.


Assuntos
Doença de Alzheimer , Encefalopatia Traumática Crônica , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Humanos , Fosforilação , Proteínas tau/metabolismo
18.
Alzheimers Dement ; 18(8): 1523-1536, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34854549

RESUMO

INTRODUCTION: We examined the ability of plasma hyperphosphorylated tau (p-tau)181 to detect cognitive impairment due to Alzheimer's disease (AD) independently and in combination with plasma total tau (t-tau) and neurofilament light (NfL). METHODS: Plasma samples were analyzed using the Simoa platform for 235 participants with normal cognition (NC), 181 with mild cognitive impairment due to AD (MCI), and 153 with AD dementia. Statistical approaches included multinomial regression and Gaussian graphical models (GGMs) to assess a network of plasma biomarkers, neuropsychological tests, and demographic variables. RESULTS: Plasma p-tau181 discriminated AD dementia from NC, but not MCI, and correlated with dementia severity and worse neuropsychological test performance. Plasma NfL similarly discriminated diagnostic groups. Unlike plasma NfL or t-tau, p-tau181 had a direct association with cognitive diagnosis in a bootstrapped GGM. DISCUSSION: These results support plasma p-tau181 for the detection of AD dementia and the use of blood-based biomarkers for optimal disease detection.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/sangue , Biomarcadores , Disfunção Cognitiva/diagnóstico , Humanos , Filamentos Intermediários , Proteínas tau/sangue
19.
Ann Neurol ; 87(1): 116-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589352

RESUMO

OBJECTIVE: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to contact and collision sports, including American football. We hypothesized a dose-response relationship between duration of football played and CTE risk and severity. METHODS: In a convenience sample of 266 deceased American football players from the Veterans Affairs-Boston University-Concussion Legacy Foundation and Framingham Heart Study Brain Banks, we estimated the association of years of football played with CTE pathological status and severity. We evaluated the ability of years played to classify CTE status using receiver operating characteristic curve analysis. Simulation analyses quantified conditions that might lead to selection bias. RESULTS: In total, 223 of 266 participants met neuropathological diagnostic criteria for CTE. More years of football played were associated with having CTE (odds ratio [OR] = 1.30 per year played, 95% confidence interval [CI] = 1.19-1.41; p = 3.8 × 10-9 ) and with CTE severity (severe vs mild; OR = 1.14 per year played, 95% CI = 1.07-1.22; p = 3.1 × 10-4 ). Participants with CTE were 1/10th as likely to have played <4.5 years (negative likelihood ratio [LR] = 0.102, 95% CI = 0.100-0.105) and were 10 times as likely to have played >14.5 years (positive LR = 10.2, 95% CI = 9.8-10.7) compared with participants without CTE. Sensitivity and specificity were maximized at 11 years played. Simulation demonstrated that years played remained adversely associated with CTE status when years played and CTE status were both related to brain bank selection across widely ranging scenarios. INTERPRETATION: The odds of CTE double every 2.6 years of football played. After accounting for brain bank selection, the magnitude of the relationship between years played and CTE status remained consistent. ANN NEUROL 2020;87:116-131.


Assuntos
Encefalopatia Traumática Crônica/patologia , Futebol Americano/estatística & dados numéricos , Sistema de Registros/estatística & dados numéricos , Idoso , Encéfalo/patologia , Estudos de Casos e Controles , Encefalopatia Traumática Crônica/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Método Simples-Cego , Fatores de Tempo
20.
Acta Neuropathol ; 142(6): 951-960, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626223

RESUMO

Chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, is associated with behavioral, mood and cognitive impairment, including dementia. Tauopathies are neurodegenerative diseases whose neuropathological phenotypes are characterized by distinct histopathologic features of tau pathology, which progressively deposit throughout the brain. In certain tauopathies, especially Alzheimer's disease (AD), tau deposition appears to follow brain network connections. Experimental evidence suggests that the progression of tau pathology in humans, mouse and cell models could be explained by tau seeds that adopt distinct conformations and serve as templates for their own amplification to mediate transcellular propagation of pathology. Tau seeds are efficiently detected by the induction of aggregation in cell-based "biosensors" that express tau repeat domain (RD) with a disease-associated mutation (P301S) fused to complementary fluorescent protein tags (cyan and yellow fluorescent protein). Biosensors enable quantification of tau seeding in fixed and fresh-frozen brain tissue. Phospho-tau deposition in CTE follows progressive stages (I-IV), but the relationship of seeding to this deposition is unclear. We have used an established biosensor assay to independently quantify tau seeding as compared to AT8 phospho-tau histopathology in thin sections of fixed tissues of 11 brain regions from 27 patients with CTE, 5 with other tauopathies, and 5 negative controls. In contrast to prior studies of AD, we detected tau seeding late in the course of CTE (predominantly stages III and IV). It was less anatomically prevalent than AT8-positive inclusions, which were relatively widespread. We especially observed seeding in the limbic system (amygdala, thalamus, basal ganglia), which may explain the dominant cognitive and behavior impairments that characterize CTE.


Assuntos
Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA