Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 383(2): 151-158, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640133

RESUMO

Two patients with familial amyotrophic lateral sclerosis (ALS) and mutations in the gene encoding superoxide dismutase 1 (SOD1) were treated with a single intrathecal infusion of adeno-associated virus encoding a microRNA targeting SOD1. In Patient 1, SOD1 levels in spinal cord tissue as analyzed on autopsy were lower than corresponding levels in untreated patients with SOD1-mediated ALS and in healthy controls. Levels of SOD1 in cerebrospinal fluid were transiently and only slightly lower in Patient 1 but were not affected in Patient 2. In Patient 1, meningoradiculitis developed after the infusion; Patient 2 was pretreated with immunosuppressive drugs and did not have this complication. Patient 1 had transient improvement in the strength of his right leg, a measure that had been relatively stable throughout his disease course, but there was no change in his vital capacity. Patient 2 had stable scores on a composite measure of ALS function and a stable vital capacity during a 12-month period. This study showed that intrathecal microRNA can be used as a potential treatment for SOD1-mediated ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , MicroRNAs/uso terapêutico , Superóxido Dismutase-1/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/genética , Dependovirus , Evolução Fatal , Inativação Gênica , Terapia Genética , Vetores Genéticos , Humanos , Injeções Espinhais , Masculino , Meningoencefalite , Pessoa de Meia-Idade , Mutação , Estudo de Prova de Conceito , Medula Espinal/química , Medula Espinal/patologia , Superóxido Dismutase-1/análise , Superóxido Dismutase-1/genética , Capacidade Vital , Adulto Jovem
2.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813800

RESUMO

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Assuntos
Cisterna Magna/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transdução Genética , Animais , Catéteres , Sistema Nervoso Central/metabolismo , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Injeções Espinhais , Imageamento por Ressonância Magnética , Modelos Animais , Ovinos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Transgenes , Gravação em Vídeo
3.
Nature ; 488(7412): 499-503, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22801503

RESUMO

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Predisposição Genética para Doença/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Profilinas/genética , Profilinas/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Células Cultivadas , Exoma/genética , Feminino , Cones de Crescimento/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Judeus/genética , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Proteínas Mutantes/genética , Linhagem , Conformação Proteica , Ubiquitinação , População Branca/genética
4.
Proc Natl Acad Sci U S A ; 111(12): E1121-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616503

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease that causes motor neuron degeneration, progressive motor dysfunction, paralysis, and death. Although multiple causes have been identified for this disease, >95% of ALS cases show aggregation of transactive response DNA binding protein (TDP-43) accompanied by its nuclear depletion. Therefore, the TDP-43 pathology may be a converging point in the pathogenesis that originates from various initial triggers. The aggregation is thought to result from TDP-43 misfolding, which could generate cellular toxicity. However, the aggregation as well as the nuclear depletion could also lead to a partial loss of TDP-43 function or TDP-43 dysfunction. To investigate the impact of TDP-43 dysfunction, we generated a transgenic mouse model for a partial loss of TDP-43 function using transgenic RNAi. These mice show ubiquitous transgene expression and TDP-43 knockdown in both the periphery and the central nervous system (CNS). Strikingly, these mice develop progressive neurodegeneration prominently in cortical layer V and spinal ventral horn, motor dysfunction, paralysis, and death. Furthermore, examination of splicing patterns of TDP-43 target genes in human ALS revealed changes consistent with TDP-43 dysfunction. These results suggest that the CNS, particularly motor neurons, possess a heightened vulnerability to TDP-43 dysfunction. Additionally, because TDP-43 knockdown predominantly occur in astrocytes in the spinal cord of these mice, our results suggest that TDP-43 dysfunction in astrocytes is an important driver for motor neuron degeneration and clinical phenotypes of ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Esclerose Lateral Amiotrófica/genética , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/fisiopatologia , Proteínas de Ligação a DNA/genética , Camundongos , Fenótipo
5.
Neurobiol Dis ; 48(3): 391-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22766032

RESUMO

UNLABELLED: Genetic variants in UBQLN1 gene have been linked to neurodegeneration and mutations in UBQLN2 have recently been identified as a rare cause of amyotrophic lateral sclerosis (ALS). OBJECTIVE: To test if genetic variants in UBQLN1 are involved in ALS. METHODS: 102 and 94 unrelated patients with familial and sporadic forms of ALS were screened for UBQLN1 gene mutations. Single nucleotide variants were further screened in a larger set of sporadic ALS (SALS) patients and unrelated control subjects using high-throughput Taqman genotyping; variants were further assessed for novelty using the 1000Genomes and NHLBI databases. In vitro studies tested the effect of UBQLN1 variants on the ubiquitin-proteasome system (UPS). RESULTS: Only two UBQLN1 coding variants were detected in the familial and sporadic ALS DNA set; one, the missense mutation p.E54D, was identified in a single patient with atypical motor neuron disease consistent with Brown-Vialetto-Van Laere syndrome (BVVLS), for whom c20orf54 mutations had been excluded. Functional studies revealed that UBQLN1E54D protein forms cytosolic aggregates that contain mislocalized TDP-43 and impairs degradation of ubiquitinated proteins through the proteasome. CONCLUSIONS: Genetic variants in UBQLN1 are not commonly associated with ALS. A novel UBQLN1 mutation (E45D) detected in a patient with BVVLS altered nuclear TDP-43 localization in vitro, suggesting that UPS dysfunction may also underlie the pathogenesis of this condition.


Assuntos
Esclerose Lateral Amiotrófica/genética , Paralisia Bulbar Progressiva/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Perda Auditiva Neurossensorial/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Western Blotting , Análise Mutacional de DNA , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Transfecção
6.
Hum Mol Genet ; 19(21): 4160-75, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20699327

RESUMO

Mutations in the RNA-binding protein FUS (fused in sarcoma) are linked to amyotrophic lateral sclerosis (ALS), but the mechanism by which these mutants cause motor neuron degeneration is not known. We report a novel ALS truncation mutant (R495X) that leads to a relatively severe ALS clinical phenotype compared with FUS missense mutations. Expression of R495X FUS, which abrogates a putative nuclear localization signal at the C-terminus of FUS, in HEK-293 cells and in the zebrafish spinal cord caused a striking cytoplasmic accumulation of the protein to a greater extent than that observed for recessive (H517Q) and dominant (R521G) missense mutants. Furthermore, in response to oxidative stress or heat shock conditions in cultures and in vivo, the ALS-linked FUS mutants, but not wild-type FUS, assembled into perinuclear stress granules in proportion to their cytoplasmic expression levels. These findings demonstrate a potential link between FUS mutations and cellular pathways involved in stress responses that may be relevant to altered motor neuron homeostasis in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/fisiologia , Adulto , Animais , Linhagem Celular , Citoplasma/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Estresse Oxidativo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Peixe-Zebra
7.
Am J Hum Genet ; 84(1): 85-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19118816

RESUMO

Mutations of the lipid phosphatase FIG4 that regulates PI(3,5)P(2) are responsible for the recessive peripheral-nerve disorder CMT4J. We now describe nonsynonymous variants of FIG4 in 2% (9/473) of patients with amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). Heterozygosity for a deleterious allele of FIG4 appears to be a risk factor for ALS and PLS, extending the list of known ALS genes and increasing the clinical spectrum of FIG4-related diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Flavoproteínas/genética , Predisposição Genética para Doença , Adulto , Idoso , Sequência de Aminoácidos , Heterozigoto , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doença dos Neurônios Motores/genética , Mutação , Monoéster Fosfórico Hidrolases
8.
Proc Natl Acad Sci U S A ; 106(22): 9004-9, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451621

RESUMO

Amyotrophic lateral sclerosis is a degenerative disorder of motor neurons that typically develops in the 6th decade and is uniformly fatal, usually within 5 years. To identify genetic variants associated with susceptibility and phenotypes in sporadic ALS, we performed a genome-wide SNP analysis in sporadic ALS cases and controls. A total of 288,357 SNPs were screened in a set of 1,821 sporadic ALS cases and 2,258 controls from the U.S. and Europe. Survival analysis was performed using 1,014 deceased sporadic cases. Top results for susceptibility were further screened in an independent sample set of 538 ALS cases and 556 controls. SNP rs1541160 within the KIFAP3 gene (encoding a kinesin-associated protein) yielded a genome-wide significant result (P = 1.84 x 10(-8)) that withstood Bonferroni correction for association with survival. Homozygosity for the favorable allele (CC) conferred a 14.0 months survival advantage. Sequence, genotypic and functional analyses revealed that there is linkage disequilibrium between rs1541160 and SNP rs522444 within the KIFAP3 promoter and that the favorable alleles of rs1541160 and rs522444 correlate with reduced KIFAP3 expression. No SNPs were associated with risk of sporadic ALS, site of onset, or age of onset. We have identified a variant within the KIFAP3 gene that is associated with decreased KIFAP3 expression and increased survival in sporadic ALS. These findings support the view that genetic factors modify phenotypes in this disease and that cellular motor proteins are determinants of motor neuron viability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/mortalidade , Proteínas do Citoesqueleto/genética , Alelos , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
9.
Nat Commun ; 13(1): 2799, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589711

RESUMO

GGGGCC repeat expansion in C9ORF72, which can be translated in both sense and antisense directions into five dipeptide repeat (DPR) proteins, including poly(GP), poly(GR), and poly(GA), is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we developed sensitive assays that can detect poly(GA) and poly(GR) in the cerebrospinal fluid (CSF) of patients with C9ORF72 mutations. CSF poly(GA) and poly(GR) levels did not correlate with age at disease onset, disease duration, or rate of decline of ALS Functional Rating Scale, and the average levels of these DPR proteins were similar in symptomatic and pre-symptomatic patients with C9ORF72 mutations. However, in a patient with C9ORF72-ALS who was treated with antisense oligonucleotide (ASO) targeting the aberrant C9ORF72 transcript, CSF poly(GA) and poly(GR) levels decreased approximately 50% within 6 weeks, indicating they may serve as sensitive fluid-based biomarkers in studies directed against the production of GGGGCC repeat RNAs or DPR proteins.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Proteínas
10.
Nat Med ; 28(1): 117-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949835

RESUMO

Expansions of a G4C2 repeat in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating adult-onset neurodegenerative disorders. Using C9-ALS/FTD patient-derived cells and C9ORF72 BAC transgenic mice, we generated and optimized antisense oligonucleotides (ASOs) that selectively blunt expression of G4C2 repeat-containing transcripts and effectively suppress tissue levels of poly(GP) dipeptides. ASOs with reduced phosphorothioate content showed improved tolerability without sacrificing efficacy. In a single patient harboring mutant C9ORF72 with the G4C2 repeat expansion, repeated dosing by intrathecal delivery of the optimal ASO was well tolerated, leading to significant reductions in levels of cerebrospinal fluid poly(GP). This report provides insight into the effect of nucleic acid chemistry on toxicity and, to our knowledge, for the first time demonstrates the feasibility of clinical suppression of the C9ORF72 gene. Additional clinical trials will be required to demonstrate safety and efficacy of this therapy in patients with C9ORF72 gene mutations.


Assuntos
Proteína C9orf72/genética , Mutação , Oligonucleotídeos Antissenso/genética , Animais , Proteína C9orf72/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
11.
Nat Med ; 28(2): 251-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145305

RESUMO

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Assuntos
Doença de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
12.
Nat Commun ; 13(1): 6901, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371497

RESUMO

Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Superóxido Dismutase/genética , Fenótipo , Mutação
13.
Ann Neurol ; 68(1): 102-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20582942

RESUMO

Three clustered, homologous paraoxonase genes (PON1, PON2, and PON3) have roles in preventing lipid oxidation and detoxifying organophosphates. Recent reports describe a genetic association between the PON genes and sporadic amyotrophic lateral sclerosis (ALS). We now report that in genomic DNA from individuals with familial and sporadic ALS, we have identified at least 7 PON gene mutations that are predicted to alter PON function.


Assuntos
Esclerose Lateral Amiotrófica/genética , Arildialquilfosfatase/genética , Esterases/genética , Mutação , Sequência de Aminoácidos , Análise Mutacional de DNA , Família , Humanos , Homologia de Sequência de Aminoácidos
14.
Artigo em Inglês | MEDLINE | ID: mdl-34348533

RESUMO

Objective: To measure the correlation between single breath counting (SBC) and forced vital capacity (liters, FVCL) in amyotrophic lateral sclerosis (ALS) patients and to define the utility of SBC for determining when patients meet the threshold for initiation of noninvasive positive pressure ventilation (FVC < 50% predicted [FVCpred]). Methods: Both patient paced (SBCpp) or externally paced (SBCep) counting along with FVCL+pred and standard clinical data were collected. Linear regression was used to examine SBCpp and SBCep as a predictor of FVCL. Receiver operating characteristic curve analysis evaluated the sensitivity and specificity of SBC categorically predicting FVCpred of ≤50%. Results: In 30 ALS patients, SBC explained a moderate proportion of the variance in FVCL (SBCpp: R2= 0.431, p < 0.001; SBCep: R2 = 0.511, p < 0.01); this proportion improved when including covariates (SBCpp: R2= 0.635, p < 0.01; SBCep: R2= 0.657, p < 0.01). Patients with minimal speech involvement performed similarly in unadjusted (SBCpp: R2 = 0.511, p < 0.01; SBCep: R2= 0.595, p < 0.01) and adjusted (SBCpp: R2 = 0.634, p < 0.01; SBCep: R2= 0.650, p < 0.01) models. SBCpp had 100% sensitivity and 60% specificity (area under curve (AUC) = 0.696) for predicting FVCpred <50%. SBCep had 100% sensitivity and 56% specificity (AUC = 0.696). With minimal speech involvement SBCpp and SBCep both had 100% sensitivity and 76.1% specificity (SPCpp: AUC = 0.845; SBCep: AUC = 0.857). Conclusions: SBC explains a moderate proportion of variance in FVC and is an extremely sensitive marker of poor FVC. When FVC cannot be obtained, such as during the current COVID-19 pandemic, SBC is helpful in directing patient care.


Assuntos
Esclerose Lateral Amiotrófica , COVID-19 , Esclerose Lateral Amiotrófica/diagnóstico , Humanos , Pandemias , SARS-CoV-2 , Capacidade Vital
15.
Neurology ; 92(4): e359-e370, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30626650

RESUMO

OBJECTIVE: To evaluate the safety and efficacy of l-serine in humans with hereditary sensory autonomic neuropathy type I (HSAN1). METHODS: In this randomized, placebo-controlled, parallel-group trial with open-label extension, patients aged 18-70 years with symptomatic HSAN1 were randomized to l-serine (400 mg/kg/day) or placebo for 1 year. All participants received l-serine during the second year. The primary outcome measure was the Charcot-Marie-Tooth Neuropathy Score version 2 (CMTNS). Secondary outcomes included plasma sphingolipid levels, epidermal nerve fiber density, electrophysiologic measurements, patient-reported measures, and adverse events. RESULTS: Between August 2013 and April 2014, we enrolled and randomized 18 participants, 16 of whom completed the study. After 1 year, the l-serine group experienced improvement in CMTNS relative to the placebo group (-1.5 units, 95% CI -2.8 to -0.1, p = 0.03), with evidence of continued improvement in the second year of treatment (-0.77, 95% CI -1.67 to 0.13, p = 0.09). Concomitantly, deoxysphinganine levels dropped in l-serine-treated but not placebo-treated participants (59% decrease vs 11% increase; p < 0.001). There were no serious adverse effects related to l-serine. CONCLUSION: High-dose oral l-serine supplementation appears safe in patients with HSAN1 and is potentially effective at slowing disease progression. CLINICALTRIALSGOV IDENTIFIER: NCT01733407. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that high-dose oral l-serine supplementation significantly slows disease progression in patients with HSAN1.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/tratamento farmacológico , Serina/uso terapêutico , Resultado do Tratamento , Adolescente , Adulto , Idoso , Método Duplo-Cego , Feminino , Seguimentos , Neuropatias Hereditárias Sensoriais e Autônomas/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa/efeitos dos fármacos , Medição da Dor , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/metabolismo , Inquéritos e Questionários , Ubiquitina Tiolesterase/metabolismo , Adulto Jovem
16.
Neurology ; 93(24): e2294-e2305, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740545

RESUMO

OBJECTIVE: To determine the safety and efficacy of mesenchymal stem cell (MSC)-neurotrophic factor (NTF) cells (NurOwn®, autologous bone marrow-derived MSCs, induced to secrete NTFs) delivered by combined intrathecal and intramuscular administration to participants with amyotrophic lateral sclerosis (ALS) in a phase 2 randomized controlled trial. METHODS: The study enrolled 48 participants randomized 3:1 (treatment: placebo). After a 3-month pretransplant period, participants received 1 dose of MSC-NTF cells (n = 36) or placebo (n = 12) and were followed for 6 months. CSF was collected before and 2 weeks after transplantation. RESULTS: The study met its primary safety endpoint. The rate of disease progression (Revised ALS Functional Rating Scale [ALSFRS-R] slope change) in the overall study population was similar in treated and placebo participants. In a prespecified rapid progressor subgroup (n = 21), rate of disease progression was improved at early time points (p < 0.05). To address heterogeneity, a responder analysis showed that a higher proportion of treated participants experienced ≥1.5 points/month ALSFRS-R slope improvement compared to placebo at all time points, and was significant in rapid progressors at 4 and 12 weeks (p = 0.004 and 0.046, respectively). CSF neurotrophic factors increased and CSF inflammatory biomarkers decreased in treated participants (p < 0.05) post-transplantation. CSF monocyte chemoattractant protein-1 levels correlated with ALSFRS-R slope improvement up to 24 weeks (p < 0.05). CONCLUSION: A single-dose transplantation of MSC-NTF cells is safe and demonstrated early promising signs of efficacy. This establishes a clear path forward for a multidose randomized clinical trial of intrathecal autologous MSC-NTF cell transplantation in ALS. CLASSIFICATION OF EVIDENCE: This phase II study provides Class I evidence.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Fatores de Crescimento Neural/líquido cefalorraquidiano , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transplante Autólogo
17.
Ann Clin Transl Neurol ; 6(4): 642-654, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31019989

RESUMO

OBJECTIVE: Dysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions. METHODS: We sequenced RNA from myogenic cells to identify a novel dysferlin pathogenic variant in two affected siblings that previously had only one disease-causing variant identified. We designed antisense oligonucleotides (AONs) to bypass the effects of this mutation on RNA splicing. RESULTS: We identified a new pathogenic point mutation deep within dysferlin intron 50i. This intronic variant causes aberrant mRNA splicing and inclusion of an additional pseudoexon (PE, we term PE50.1) within the mature dysferlin mRNA. PE50.1 inclusion alters the protein sequence, causing premature translation termination. We identified this mutation in 23 dysferlinopathy patients (seventeen families), revealing it to be one of the more prevalent dysferlin mutations. We used AON-mediated exon skipping to correct the aberrant PE50.1 splicing events in vitro, which increased normal mRNA production and significantly restored dysferlin protein expression. INTERPRETATION: Deep intronic mutations can be a common underlying cause of dysferlinopathy, and importantly, could be treatable with AON-based exon-skipping strategies.


Assuntos
Disferlina/genética , Íntrons/genética , Distrofia Muscular do Cíngulo dos Membros/etiologia , Mutação/genética , Miopatias Distais/genética , Humanos , Íntrons/efeitos dos fármacos , Proteínas de Membrana/deficiência , Atrofia Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/efeitos dos fármacos
18.
Neurology ; 93(17): e1605-e1617, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31578300

RESUMO

OBJECTIVE: To define the natural history of the C9orf72 amyotrophic lateral sclerosis (C9ALS) patient population, develop disease biomarkers, and characterize patient pathologies. METHODS: We prospectively collected clinical and demographic data from 116 symptomatic C9ALS and 12 non-amyotrophic lateral sclerosis (ALS) full expansion carriers across 7 institutions in the United States and the Netherlands. In addition, we collected blood samples for DNA repeat size assessment, CSF samples for biomarker identification, and autopsy samples for dipeptide repeat protein (DPR) size determination. Finally, we collected retrospective clinical data via chart review from 208 individuals with C9ALS and 450 individuals with singleton ALS. RESULTS: The mean age at onset in the symptomatic prospective cohort was 57.9 ± 8.3 years, and median duration of survival after onset was 36.9 months. The monthly change was -1.8 ± 1.7 for ALS Functional Rating Scale-Revised and -1.4% ± 3.24% of predicted for slow vital capacity. In blood DNA, we found that G4C2 repeat size correlates positively with age. In CSF, we observed that concentrations of poly(GP) negatively correlate with DNA expansion size but do not correlate with measures of disease progression. Finally, we found that size of poly(GP) dipeptides in the brain can reach large sizes similar to that of their DNA repeat derivatives. CONCLUSIONS: We present a thorough investigation of C9ALS natural history, providing the basis for C9ALS clinical trial design. We found that clinical features of this genetic subset are less variant than in singleton ALS. In addition, we identified important correlations of C9ALS patient pathologies with clinical and demographic data.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Idade de Início , Esclerose Lateral Amiotrófica/epidemiologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/urina , Expansão das Repetições de DNA , Feminino , Seguimentos , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
20.
J Neurol ; 255(1): 99-102, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18060566

RESUMO

The cause of ALS remains largely unknown for the 90% with no known family history, but spontaneous mutation to risk alleles of as yet unidentified genes is possible. It has long been recognized that genetic diseases may be more likely to occur in the last born children of a sibship because increased paternal age is associated with an increased spontaneous point mutation rate in sperm. To test the hypothesis that such a mechanism is responsible for sporadic ALS, we have performed a retrospective analysis of birth order position. We have analyzed sibships of size greater than four using a binomial test for birth position. The 478 pedigrees studied show no birth order effect, suggesting that any genetic contributions to sporadic ALS are more likely to be through deletion in large genes or interactions of common polymorphisms, rather than frequent spontaneous point mutation. This is encouraging for the prospect of finding sporadic ALS susceptibility genes using genome-wide association mapping.


Assuntos
Envelhecimento/genética , Esclerose Lateral Amiotrófica/genética , Ordem de Nascimento , Predisposição Genética para Doença/genética , Mutação Puntual/genética , Análise Mutacional de DNA , Feminino , Deleção de Genes , Marcadores Genéticos/genética , Humanos , Padrões de Herança/genética , Masculino , Linhagem , Polimorfismo Genético/genética , Estudos Retrospectivos , Fatores de Risco , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA