Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(18): 12414-12423, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34468124

RESUMO

Understanding the transformation of graphitic carbon nitride (g-C3N4) is essential to assess nanomaterial robustness and environmental risks. Using an integrated experimental and simulation approach, our work has demonstrated that the photoinduced hole (h+) on g-C3N4 nanosheets significantly enhances nanomaterial decomposition under •OH attack. Two g-C3N4 nanosheet samples D and M2 were synthesized, among which M2 had more pores, defects, and edges, and they were subjected to treatments with •OH alone and both •OH and h+. Both D and M2 were oxidized and released nitrate and soluble organic fragments, and M2 was more susceptible to oxidation. Particularly, h+ increased the nitrate release rate by 3.37-6.33 times even though the steady-state concentration of •OH was similar. Molecular simulations highlighted that •OH only attacked a limited number of edge-site heptazines on g-C3N4 nanosheets and resulted in peripheral etching and slow degradation, whereas h+ decreased the activation energy barrier of C-N bond breaking between heptazines, shifted the degradation pathway to bulk fragmentation, and thus led to much faster degradation. This discovery not only sheds light on the unique environmental transformation of emerging photoreactive nanomaterials but also provides guidelines for designing robust nanomaterials for engineering applications.


Assuntos
Grafite , Nanoestruturas , Compostos de Nitrogênio
2.
Sci Rep ; 12(1): 8080, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577817

RESUMO

The carbon net negative conversion of bio-char, the low value byproduct of pyrolysis bio-oil production from biomass, to high value, very high purity, highly crystalline flake graphite agglomerates with rationally designed shape and size tailored for lithium-ion battery energy storage material is reported. The process is highly efficient, 0.41 g/Wh; the energy content of its co-product of the process, bio-oil, exceeds that needed to power the process. It is shown that the shape of the starting material is retained during the transformation, allowing the ultimate morphology of the graphite agglomerates to be engineered from relatively malleable biomass. In contrast to commercial graphite production, the process can be performed at small scale with low equipment costs, enabling individual research laboratories to produce Li-ion grade graphite with customizable shape, size and porosity for Si/graphite composite and other graphite involved anodes. The mechanism of the graphitization of bio-char, a "non-graphitizable" carbon, is explored, suggesting the molten metal catalyst is absorbed into the pore structure, transported through and transforming the largely immobile biochar. Finally, the transformation of biomass to rationally designed graphite morphologies with Li-ion anode performance that closely mimic commercial shaped graphite is demonstrated.


Assuntos
Grafite , Lítio , Biomassa , Carbono/química , Fontes de Energia Elétrica , Grafite/química , Íons/química , Lítio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA