Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(5): 994-1007, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22608083

RESUMO

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica , Evolução Clonal , Mutação , Algoritmos , Aberrações Cromossômicas , Feminino , Humanos , Mutação Puntual
2.
Cell ; 149(5): 979-93, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22608084

RESUMO

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Assuntos
Neoplasias da Mama/genética , Análise Mutacional de DNA , Estudo de Associação Genômica Ampla , Mutação , Desaminase APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminase/metabolismo , Feminino , Genes BRCA1 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
3.
Cell ; 144(1): 27-40, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21215367

RESUMO

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Assuntos
Aberrações Cromossômicas , Neoplasias/genética , Neoplasias/patologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Coloração Cromossômica , Feminino , Rearranjo Gênico , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Pessoa de Meia-Idade
5.
Nature ; 534(7605): 47-54, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27135926

RESUMO

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Assuntos
Neoplasias da Mama/genética , Genoma Humano/genética , Mutação/genética , Estudos de Coortes , Análise Mutacional de DNA , Replicação do DNA/genética , DNA de Neoplasias/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genômica , Humanos , Masculino , Mutagênese , Taxa de Mutação , Oncogenes/genética , Reparo de DNA por Recombinação/genética
6.
N Engl J Med ; 374(23): 2209-2221, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27276561

RESUMO

BACKGROUND: Recent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. METHODS: We enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. RESULTS: We identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNA-splicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or both (in 13%); and, provisionally, AML with IDH2(R172) mutations (in 1%). Patients with chromatin-spliceosome and TP53-aneuploidy AML had poor outcomes, with the various class-defining mutations contributing independently and additively to the outcome. In addition to class-defining lesions, other co-occurring driver mutations also had a substantial effect on overall survival. The prognostic effects of individual mutations were often significantly altered by the presence or absence of other driver mutations. Such gene-gene interactions were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis. These predictions require validation in prospective clinical trials. CONCLUSIONS: The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT00146120.).


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Adulto , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Análise Mutacional de DNA , Epistasia Genética , Fusão Gênica , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/terapia , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Splicing de RNA , Análise de Sobrevida
7.
Nature ; 496(7446): 498-503, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23594743

RESUMO

Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.


Assuntos
Sequência Conservada/genética , Genoma/genética , Peixe-Zebra/genética , Animais , Cromossomos/genética , Evolução Molecular , Feminino , Genes/genética , Genoma Humano/genética , Genômica , Humanos , Masculino , Meiose/genética , Anotação de Sequência Molecular , Pseudogenes/genética , Padrões de Referência , Processos de Determinação Sexual/genética , Proteínas de Peixe-Zebra/genética
8.
Nature ; 486(7403): 400-4, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22722201

RESUMO

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Mutagênese/genética , Mutação/genética , Oncogenes/genética , Fatores Etários , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Citosina/metabolismo , Análise Mutacional de DNA , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Gradação de Tumores , Reprodutibilidade dos Testes , Transdução de Sinais/genética
9.
Nature ; 469(7331): 539-42, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21248752

RESUMO

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/genética
10.
Nature ; 467(7319): 1109-13, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20981101

RESUMO

Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.


Assuntos
Instabilidade Genômica/genética , Mutagênese/genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Ciclo Celular/genética , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Análise Mutacional de DNA , Progressão da Doença , Evolução Molecular , Genes Neoplásicos/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metástase Neoplásica/patologia , Especificidade de Órgãos , Telômero/genética , Telômero/patologia
11.
Blood ; 122(22): 3616-27; quiz 3699, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24030381

RESUMO

Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS-myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic "predestination," in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application.


Assuntos
Mutação , Síndromes Mielodisplásicas/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Progressão da Doença , Epistasia Genética , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Crônica/genética , Masculino , Pessoa de Meia-Idade , Doenças Mieloproliferativas-Mielodisplásicas/genética , Oncogenes , Prognóstico , Splicing de RNA/genética , Spliceossomos/genética
12.
Nucleic Acids Res ; 41(12): 6119-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23630320

RESUMO

The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.


Assuntos
Ciclo Celular/genética , Variações do Número de Cópias de DNA , Blastômeros/química , Linhagem Celular Tumoral , Aberrações Cromossômicas , Genoma Humano , Genômica/métodos , Técnicas de Genotipagem , Humanos , Mutação , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Análise de Célula Única
13.
Retrovirology ; 7(1): 111, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21171979

RESUMO

BACKGROUND: Xenotropic murine leukaemia viruses (MLV-X) are endogenous gammaretroviruses that infect cells from many species, including humans. Xenotropic murine leukaemia virus-related virus (XMRV) is a retrovirus that has been the subject of intense debate since its detection in samples from humans with prostate cancer (PC) and chronic fatigue syndrome (CFS). Controversy has arisen from the failure of some studies to detect XMRV in PC or CFS patients and from inconsistent detection of XMRV in healthy controls. RESULTS: Here we demonstrate that Taqman PCR primers previously described as XMRV-specific can amplify common murine endogenous viral sequences from mouse suggesting that mouse DNA can contaminate patient samples and confound specific XMRV detection. To consider the provenance of XMRV we sequenced XMRV from the cell line 22Rv1, which is infected with an MLV-X that is indistinguishable from patient derived XMRV. Bayesian phylogenies clearly show that XMRV sequences reportedly derived from unlinked patients form a monophyletic clade with interspersed 22Rv1 clones (posterior probability >0.99). The cell line-derived sequences are ancestral to the patient-derived sequences (posterior probability >0.99). Furthermore, pol sequences apparently amplified from PC patient material (VP29 and VP184) are recombinants of XMRV and Moloney MLV (MoMLV) a virus with an envelope that lacks tropism for human cells. Considering the diversity of XMRV we show that the mean pairwise genetic distance among env and pol 22Rv1-derived sequences exceeds that of patient-associated sequences (Wilcoxon rank sum test: p = 0.005 and p < 0.001 for pol and env, respectively). Thus XMRV sequences acquire diversity in a cell line but not in patient samples. These observations are difficult to reconcile with the hypothesis that published XMRV sequences are related by a process of infectious transmission. CONCLUSIONS: We provide several independent lines of evidence that XMRV detected by sensitive PCR methods in patient samples is the likely result of PCR contamination with mouse DNA and that the described clones of XMRV arose from the tumour cell line 22Rv1, which was probably infected with XMRV during xenografting in mice. We propose that XMRV might not be a genuine human pathogen.


Assuntos
Contaminação por DNA , Síndrome de Fadiga Crônica/virologia , Neoplasias da Próstata/virologia , Virologia/métodos , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/isolamento & purificação , Animais , DNA Viral/química , DNA Viral/genética , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA
14.
Nat Genet ; 50(5): 682-692, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662167

RESUMO

Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials.


Assuntos
Neoplasias da Próstata/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/genética , Progressão da Doença , Fator 3-alfa Nuclear de Hepatócito/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Oncogenes , Neoplasias da Próstata/patologia
15.
Science ; 348(6237): 880-6, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999502

RESUMO

How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.


Assuntos
Carcinoma de Células Escamosas/genética , Evolução Clonal , Genes Neoplásicos , Mutação , Seleção Genética , Neoplasias Cutâneas/genética , Carga Tumoral/genética , Carcinoma de Células Escamosas/patologia , Epiderme/metabolismo , Epiderme/patologia , Epiderme/efeitos da radiação , Pálpebras/metabolismo , Pálpebras/patologia , Pálpebras/efeitos da radiação , Humanos , Mutação/genética , Mutação/efeitos da radiação , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos da radiação , Raios Ultravioleta
16.
Nat Med ; 21(7): 751-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26099045

RESUMO

The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Células Clonais , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Genômica , Humanos , Pessoa de Meia-Idade , Mutação/genética
17.
Nat Genet ; 47(4): 367-372, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730763

RESUMO

Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.


Assuntos
Evolução Clonal/genética , Análise Mutacional de DNA , Neoplasias Primárias Múltiplas/genética , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Estudos de Casos e Controles , Linhagem da Célula/genética , Células Clonais/patologia , Humanos , Masculino , Mutação , Filogenia
18.
Genome Biol ; 15(9): 455, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25260652

RESUMO

The in vivo validation of cancer mutations and genes identified in cancer genomics is resource-intensive because of the low throughput of animal experiments. We describe a mouse model that allows multiple cancer mutations to be validated in each animal line. Animal lines are generated with multiple candidate cancer mutations using transposons. The candidate cancer genes are tagged and randomly expressed in somatic cells, allowing easy identification of the cancer genes involved in the generated tumours. This system presents a useful, generalised and efficient means for animal validation of cancer genes.


Assuntos
Estudos de Associação Genética/métodos , Neoplasias/genética , Animais , Carcinogênese/genética , Células Cultivadas , Técnicas de Cocultura , Elementos de DNA Transponíveis , Predisposição Genética para Doença , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Herança Multifatorial , Mutação , Transplante de Neoplasias
19.
Nat Commun ; 5: 2997, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24429703

RESUMO

Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment.


Assuntos
Exoma , Mieloma Múltiplo/genética , Adulto , Idoso , Antígenos Nucleares , Estudos de Coortes , Variações do Número de Cópias de DNA , Proteína 1 de Resposta de Crescimento Precoce , Evolução Molecular , GTP Fosfo-Hidrolases , Heterogeneidade Genética , Humanos , Linfotoxina-beta , Proteínas de Membrana , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Receptores Imunológicos , Análise de Sequência de DNA , Fatores de Transcrição , Proteína Supressora de Tumor p53 , Proteínas ras , Proteínas Roundabout
20.
Science ; 345(6196): 1251343, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082706

RESUMO

Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.


Assuntos
Elementos de DNA Transponíveis , Elementos Nucleotídeos Longos e Dispersos , Neoplasias/genética , Transdução Genética , Carcinogênese/genética , Cromatina/química , Éxons , Genoma Humano , Humanos , Mutagênese Insercional , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA