Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 50(18): 10216-25, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27477586

RESUMO

Although historic perfluorinated compounds are currently under scrutiny and growing regulatory control in the world, little is known about human exposure to other polyfluorinated compounds presently in use. Fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) are known to degrade to terminal perfluorinated acids and toxic reactive intermediates through metabolic pathways. Therefore, it is important to characterize their human exposure by the identification of unique biomarkers. With the use of liquid chromatography-mass spectrometry-time-of-flight analysis (LC-MS-TOF), we developed a workflow for the identification of metabolites for the 8:2 FTOH and 8:2 diPAP. Analysis of serum and urine of dosed rats indicated the 8:2 FTOH-sulfate and the 8:2 diPAP as potential biomarkers. These compounds, as well as 25 other fluorinated compounds and metabolites, were analyzed in human serum and urine samples from the general population (n = 100) and office workers (n = 30). The 8:2 FTOH-sulfate was measured for the first time in human samples in 5 to 10% of the serum samples, ranging from 50 to 80 pg/mL. The 8:2 diPAP was measured in 58% of the samples, ranging from 100 to 800 pg/mL. This study indicates the FTOH-sulfate conjugate as a biomarker of exposure to FTOHs and PAPs in humans.


Assuntos
Álcoois , Biomarcadores , Hidrocarbonetos Fluorados/toxicidade , Organofosfatos/toxicidade , Ácidos , Animais , Cromatografia Líquida , Fluorocarbonos , Humanos , Espectrometria de Massas , Ratos
2.
Toxicol Appl Pharmacol ; 282(2): 161-74, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25497286

RESUMO

There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long-Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects), singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways.


Assuntos
Biomarcadores/sangue , Praguicidas/química , Praguicidas/toxicidade , Animais , Quimiocinas/sangue , Relação Dose-Resposta a Droga , Hormônios/sangue , Inseticidas/toxicidade , Masculino , Metabolômica , Pirazóis/toxicidade , Ratos , Ratos Long-Evans
3.
J Am Chem Soc ; 133(50): 20146-8, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22098504

RESUMO

A palladium-catalyzed Heck-type reaction of unactivated alkyl iodides is described. This process displays broad substrate scope with respect to both alkene and alkyl iodide components and provides efficient access to a variety of cyclic products. The reaction is proposed to proceed via a hybrid organometallic-radical mechanism, facilitating the Heck-type process with alkyl halide coupling partners. Initial intermolecular studies are also reported, demonstrating the potentially wide applicability of this approach in synthesis.

4.
Environ Pollut ; 234: 297-306, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29182974

RESUMO

Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries.


Assuntos
Água Potável/análise , Filtração/instrumentação , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , North Carolina , Projetos Piloto
5.
Sci Total Environ ; 569-570: 880-887, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27378152

RESUMO

Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10-500ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered.


Assuntos
Inseticidas/análise , Pirazóis/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Inseticidas/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , North Carolina , Pirazóis/química , Reciclagem , Poluentes Químicos da Água/química
6.
Environ Int ; 88: 269-280, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26812473

RESUMO

There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC-TOF/molecular feature data (match score≥90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along with exposure and bioactivity estimates from ExpoCast and Tox21, respectively. Chemicals with elevated exposure and/or toxicity potential were further examined using a mixture of 100 chemical standards. A total of 33 chemicals were confirmed present in the dust samples by formula and retention time match; nearly half of these do not appear to have been associated with house dust in the published literature. Chemical matches found in at least 10 of the 56 dust samples include Piperine, N,N-Diethyl-m-toluamide (DEET), Triclocarban, Diethyl phthalate (DEP), Propylparaben, Methylparaben, Tris(1,3-dichloro-2-propyl)phosphate (TDCPP), and Nicotine. This study demonstrates a novel suspect screening methodology to prioritize chemicals of interest for subsequent targeted analysis. The methods described here rely on strategic integration of available public resources and should be considered in future non-targeted and suspect screening assessments of environmental and biological media.


Assuntos
Poeira/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Ensaios de Triagem em Larga Escala/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas , Testes de Toxicidade
7.
Environ Int ; 78: 16-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687022

RESUMO

Fipronil is a phenylpyrazole insecticide commonly used in residential and agricultural applications. To understand more about the potential risks for human exposure associated with fipronil, urine and serum from dosed Long Evans adult rats (5 and 10mg/kg bw) were analyzed to identify metabolites as potential biomarkers for use in human biomonitoring studies. Urine from treated rats was found to contain seven unique metabolites, two of which had not been previously reported-M4 and M7 which were putatively identified as a nitroso compound and an imine, respectively. Fipronil sulfone was confirmed to be the primary metabolite in rat serum. The fipronil metabolites identified in the respective matrices were then evaluated in matched human urine (n=84) and serum (n=96) samples from volunteers with no known pesticide exposures. Although no fipronil or metabolites were detected in human urine, fipronil sulfone was present in the serum of approximately 25% of the individuals at concentrations ranging from 0.1 to 4ng/mL. These results indicate that many fipronil metabolites are produced following exposures in rats and that fipronil sulfone is a useful biomarker in human serum. Furthermore, human exposure to fipronil may occur regularly and require more extensive characterization.


Assuntos
Espectrometria de Massas/métodos , Praguicidas , Pirazóis , Adulto , Idoso , Animais , Biomarcadores/sangue , Biomarcadores/urina , Exposição Ambiental/análise , Monitoramento Ambiental , Feminino , Habitação , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Animais , Praguicidas/sangue , Praguicidas/urina , Pirazóis/sangue , Pirazóis/urina , Ratos , Ratos Long-Evans , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA