Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 13(10): 3560-75, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12388757

RESUMO

Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCF(Met30) acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCF(Met30)) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase , Alelos , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas F-Box , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Fosforilação , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteína-Arginina N-Metiltransferases , Proteínas Tirosina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Temperatura , Técnicas do Sistema de Duplo-Híbrido
2.
Front Plant Sci ; 7: 1327, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625678

RESUMO

In this report, we describe a method for the delivery of small interfering RNAs (siRNAs) into plant cells. In vitro synthesized siRNAs that were designed to target the coding region of a GREEN FLUORESCENT PROTEIN (GFP) transgene were applied by various methods onto GFP-expressing transgenic Nicotiana benthamiana plants to trigger RNA silencing. In contrast to mere siRNA applications, including spraying, syringe injection, and infiltration of siRNAs that all failed to induce RNA silencing, high pressure spraying of siRNAs resulted in efficient local and systemic silencing of the GFP transgene, with comparable efficiency as was achieved with biolistic siRNA introduction. High-pressure spraying of siRNAs with sizes of 21, 22, and 24 nucleotides (nt) led to local GFP silencing. Small RNA deep sequencing revealed that no shearing of siRNAs was detectable by high-pressure spraying. Systemic silencing was basically detected upon spraying of 22 nt siRNAs. Local and systemic silencing developed faster and more extensively upon targeting the apical meristem than spraying of mature leaves.

3.
Blood Cells Mol Dis ; 32(1): 143-54, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14757430

RESUMO

GA-binding protein (GABP) is an ets transcription factor that controls gene expression in several important biological settings. It is unique among ets factors, since the transcriptionally active complex is an obligate heterotetramer that is composed of two distinct proteins. GABPalpha includes an ets DNA binding domain (DBD), while a distinct protein, GABPbeta, contains ankyrin repeats and the transcriptional activation domain (TAD). GABP was first identified as a regulator of viral genes and nuclear respiratory factors. However, GABP is now recognized to be a key transcriptional regulator of dynamically regulated, lineage-restricted genes, especially in myeloid cells and at the neuromuscular junction. Furthermore, it regulates genes that are intimately involved in cell cycle control, protein synthesis, and cellular metabolism. GABP acts as an integrator of cellular signaling pathways by regulating key hormones and transmembrane receptors. In addition, GABP itself, is a target of phosphorylation events that lie downstream of signal transduction pathways. The physical and functional interactions of GABPalpha and GABPbeta with each other and with other transcription factors and co-activators are key to its ability to regulate gene expression. Its role in regulating genes involved in fundamental cellular processes places GABP at the nexus of key cellular pathways and functions.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fator de Transcrição de Proteínas de Ligação GA , Humanos , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional
4.
EMBO J ; 21(15): 4012-25, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145202

RESUMO

The Saccharomyces cerevisiae morphogenesis checkpoint delays mitosis in response to insults that impair actin organization and/or bud formation. The delay is due to accumulation of the inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. Having screened through a panel of yeast mutants with defects in cell morphogenesis, we report here that the polarity establishment protein Bem2p is required for the checkpoint response. Bem2p is a Rho-GTPase activating protein (GAP) previously shown to act on Rho1p, and we now show that it also acts on Cdc42p, the GTPase primarily responsible for establishment of cell polarity in yeast. Whereas the morphogenesis role of Bem2p required GAP activity, the checkpoint role of Bem2p did not. Instead, this function required an N-terminal Bem2p domain. Thus, this single protein has a GAP-dependent role in promoting cell polarity and a GAP-independent role in responding to defects in cell polarity by enacting the checkpoint. Surprisingly, Swe1p accumulation occurred normally in bem2 cells, but they were nevertheless unable to promote Cdc28p phosphorylation. Therefore, Bem2p defines a novel pathway in the morphogenesis checkpoint.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Genes cdc , Proteínas Quinases Ativadas por Mitógeno , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular , Polaridade Celular , Proteínas Fúngicas/genética , Fase G2/genética , Genes Fúngicos , Sistema de Sinalização das MAP Quinases , Metáfase/genética , Dados de Sequência Molecular , Morfogênese/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Reprodução Assexuada , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiazóis/farmacologia , Tiazolidinas , ras-GRF1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA