Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 22(10): 3474-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27090595

RESUMO

Quantitative reconstructions of terrestrial climate are highly sought after but rare, particularly in Australia. Carbon isotope discrimination in plant leaves (Δleaf ) is an established indicator of past hydroclimate because the fractionation of carbon isotopes during photosynthesis is strongly influenced by water stress. Leaves of the evergreen tree Melaleuca quinquenervia have been recovered from the sediments of some perched lakes on North Stradbroke and Fraser Islands, south-east Queensland, eastern Australia. Here, we examine the potential for using M. quinquenervia ∆leaf as a tracer of past rainfall by analysing carbon isotope ratios (δ(13) C) of modern leaves. We firstly assess Δleaf variation at the leaf and stand scale and find no systematic pattern within leaves or between leaves due to their position on the tree. We then examine the relationships between climate and Δleaf for a 11-year time series of leaves collected in a litter tray. M. quinquenervia retains its leaves for 1-4 years; thus, cumulative average climate data are used. There is a significant relationship between annual mean ∆leaf and mean annual rainfall of the hydrological year for 1-4 years (i.e. 365-1460 days) prior to leaf fall (r(2)  = 0.64, P = 0.003, n = 11). This relationship is marginally improved by accounting for the effect of pCO2 on discrimination (r(2)  = 0.67, P = 0.002, n = 11). The correlation between rainfall and Δleaf , and the natural distribution of Melaleuca quinquenervia around wetlands of eastern Australia, Papua New Guinea and New Caledonia offers significant potential to infer past rainfall on a wide range of spatial and temporal scales.


Assuntos
Isótopos de Carbono , Melaleuca , Austrália , Carbono , Papua Nova Guiné , Folhas de Planta , Chuva
2.
Mar Pollut Bull ; 65(4-9): 150-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22405805

RESUMO

The Great Barrier Reef (GBR) catchment area has been monitored simultaneously for sediment and nutrient exports from 10 priority catchments discharging into the GBR lagoon between 2006 and 2009. This allows GBR catchment-wide exports to be estimated and spatially compared within a discrete time-frame. Elevated levels of sediment and nutrient exports were recorded in all monitored catchments as compared to pre-European estimates, but vary around previous estimates of mean annual loads. During the period of monitoring, the Burdekin and Fitzroy catchments contributed the highest sediment and nutrient exports, however when loads were normalised for area, these catchments produced the lowest unit yields. In contrast, the highest yields were produced in the wetter and proportionately more intensively cultivated Johnstone, O'Connell, and Pioneer catchments particularly for dissolved nitrogens. This assessment offers the necessary scientific foundation for future monitoring, assessment, and management of sediment and nutrient loads entering the GBR.


Assuntos
Recifes de Corais , Sedimentos Geológicos/química , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Austrália , Conservação dos Recursos Naturais , Monitoramento Ambiental , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA