Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt C): 113388, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35569537

RESUMO

As an important central city in western China, Xi'an has the worst atmospheric pollution record in China and many measures have been taken to improve the air quality in the past few years. In this study, PM2.5 samples were collected across four seasons from 2017 to 2018 in Xi'an. Organic carbon and elemental carbon, water soluble ions, and elements were monitored to assess the air quality. The average annual PM2.5 concentration was (134.9 ± 48.1 µg/m3), with the highest concentration in winter (188.8 ± 93.2 µg/m3), and lowest concentration in summer (71.2 ± 12.1 µg/m3). The secondary generation of sulfate (SO42-) and nitrate (NO3-) was strong in spring, and secondary organic carbon (SOC) was formed in all seasons. The compositions of PM2.5 changed greatly during a sandstorm occurred and the Spring Festival. The sandstorm played a positive role in removing local pollutant NO3-, but also increased the concentration of SO42-, however both the concentration of SO42- and NO3- greatly increased by secondary generation during Spring Festival. Potential source analysis showed that during the sandstorm, pollutants were transported over a long distance from the northwest of China, whereas it was mainly from the local and surrounded emissions during the Spring Festival. Except Ca2+ and geological dust (GM), the other components in PM2.5 increased significantly on the day of the Spring Festival. During sampling time in Xi'an, the positive matrix factorization (PMF) model analysis showed that PM2.5 mainly came from vehicle emission, coal combustion, and biomass burning.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono/análise , China , Monitoramento Ambiental , Nitratos/análise , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
2.
Environ Sci Atmos ; 4(2): 265-274, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371605

RESUMO

Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min-1 are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA