Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(34): 14427-14431, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32787237

RESUMO

Although widely used in catalysis, the multistep syntheses and high loadings typically employed are limiting broader implementation of highly active tailor-made arylborane Lewis acids and Lewis pairs. Attempts at developing recyclable systems have thus far met with limited success, as general and versatile platforms are yet to be developed. We demonstrate a novel approach that is based on the excellent control and functional group tolerance of ring-opening metathesis polymerization (ROMP). The ROMP of highly Lewis acidic borane-functionalized phenylnorbornenes afforded both a soluble linear copolymer and a cross-linked organogel. The polymers proved highly efficient as recyclable catalysts in the reductive N-alkylation of arylamines under mild conditions and at exceptionally low catalyst loadings. The modular design presented herein can be readily adapted to other finely tuned triarylboranes, enabling wide applications of ROMP-borane polymers as well-defined supported organocatalysts.

2.
Nano Lett ; 18(4): 2564-2570, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29584938

RESUMO

Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

3.
Dalton Trans ; 52(30): 10278-10285, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462446

RESUMO

Tridentate ligands that incorporate pyridyl rather than pyrazolyl groups are emerging as an attractive class of "scorpionate"-type ligands with enhanced electron donation, increased stability, and divergent geometry at the metal centre relative to tris(pyrazolyl)borates originally introduced by Trofimenko. Following our initial reports, the tris(pyridyl)borate (Tpyb) ligand architecture has been adopted by several research groups in pursuit of functional metal complexes that offer new opportunities in catalysis and materials science. While earlier work had been focused on symmetric octahedral complexes, ML2, which are advantageous as highly robust building blocks in materials sciences, recently introduced new ligand designs provide access to heteroleptic metal complexes with vacant sites that lend themselves to applications in catalysis. Signficant progress has also been made in the post-complexation functionalization of these ligands via electrophilic and nucleophilic substitution reactions at the boron centres, opening up new routes for integration of Tpyb complexes with diverse functional materials while also raising interesting mechanistic questions.

4.
Chem Commun (Camb) ; 58(7): 977-980, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34979540

RESUMO

Although a wide variety of boron-based "scorpionate" ligands have been implemented, a modular route that offers facile access to different substitution patterns at boron has yet to be developed. Here, we demonstrate new reactivity patterns at the bridgehead positions of a ruthenium tris(pyrid-2-yl)borate complex that allow for facile tuning of steric and electronic properties.

5.
ACS Omega ; 3(4): 3868-3873, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458628

RESUMO

The drying of nanocolloidal polymers is governed by the interplay among surface tension, evaporation, and contact-line pinning, among other phenomena. Here, we describe the sequential evolution of poly-3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS) through two distinct regimes evidenced by annular or radial cracking and show that the cracking dynamics and solvent-retention postdrying and postcracking are mediated by wetting to the substrate surface. The corresponding changes in the PEDOT:PSS morphology are also observed to relate to the radial or cracking dynamics. It is suggested that the wetting-dependent effect offers a route to control morphology, understand solvent retention, and reduce cracking in polymer latex films. This study highlights the importance of substrate choice, an underexplored area of investigation in the study of colloidal materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA