Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748053

RESUMO

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfatos Açúcares , Arabidopsis/genética , Trealose , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/genética
2.
Proc Natl Acad Sci U S A ; 117(22): 12230-12238, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414920

RESUMO

Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, PHD2 and HIF2A The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan PHD2 are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan PHD2 is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan Phd2 allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in p23 that abrogates the PHD2:p23 interaction. Hif2a haploinsufficiency, but not the Tibetan Phd2 allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan Phd2 allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.


Assuntos
Adaptação Fisiológica , Proteínas de Ligação a DNA/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Mutação com Perda de Função , Alelos , Altitude , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Seleção Genética , Tibet
3.
Mol Cell ; 53(4): 645-54, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24486019

RESUMO

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.


Assuntos
Regulação da Expressão Gênica , Histona Desmetilases/metabolismo , Oxigenases de Função Mista/química , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/química , Biossíntese de Proteínas , Sequência de Aminoácidos , Animais , Catálise , Linhagem Celular Tumoral , Códon de Terminação , Células HeLa , Humanos , Hidrólise , Hidroxilação , Histona Desmetilases com o Domínio Jumonji , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
4.
Biochem Soc Trans ; 49(6): 2561-2572, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34854890

RESUMO

Human isocitrate dehydrogenase (IDH) genes encode for the IDH1, 2 & 3 isoenzymes which catalyse the formation of 2-oxoglutarate from isocitrate and are essential for normal mammalian metabolism. Although mutations in these genes in cancer were long thought to lead to a 'loss of function', combined genomic and metabolomic studies led to the discovery that a common IDH 1 mutation, present in low-grade glioma and acute myeloid leukaemia (AML), yields a variant (R132H) with a striking change of function leading to the production of (2R)-hydroxyglutarate (2HG) which consequently accumulates in large quantities both within and outside cells. Elevated 2HG is proposed to promote tumorigenesis, although the precise mechanism by which it does this remains uncertain. Inhibitors of R132H IDH1, and other subsequently identified cancer-linked 2HG producing IDH variants, are approved for clinical use in the treatment of chemotherapy-resistant AML, though resistance enabled by additional substitutions has emerged. In this review, we provide a current overview of cancer linked IDH mutations focussing on their distribution in different cancer types, the effects of substitution mutations on enzyme activity, the mode of action of recently developed inhibitors, and their relationship with emerging resistance-mediating double mutations.


Assuntos
Isocitrato Desidrogenase/genética , Isoenzimas/genética , Neoplasias/genética , Humanos , Mutação , Neoplasias/enzimologia
5.
J Am Chem Soc ; 140(7): 2514-2527, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29266939

RESUMO

Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.

7.
J Biol Chem ; 290(32): 19726-42, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26112411

RESUMO

The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1-3 or EGLN1-3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Km(app)(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Km(app)(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors.


Assuntos
Anquirinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Anquirinas/genética , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Cinética , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Transcrição Gênica
8.
Biochem J ; 463(3): 363-72, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25120187

RESUMO

The prolyl hydroxylase domain proteins (PHDs) catalyse the post-translational hydroxylation of the hypoxia-inducible factor (HIF), a modification that regulates the hypoxic response in humans. The PHDs are Fe(II)/2-oxoglutarate (2OG) oxygenases; their catalysis is proposed to provide a link between cellular HIF levels and changes in O2 availability. Transient kinetic studies have shown that purified PHD2 reacts slowly with O2 compared with some other studied 2OG oxygenases, a property which may be related to its hypoxia-sensing role. PHD2 forms a stable complex with Fe(II) and 2OG; crystallographic and kinetic analyses indicate that an Fe(II)-co-ordinated water molecule, which must be displaced before O2 binding, is relatively stable in the active site of PHD2. We used active site substitutions to investigate whether these properties are related to the slow reaction of PHD2 with O2. While disruption of 2OG binding in a R383K variant did not accelerate O2 activation, we found that substitution of the Fe(II)-binding aspartate for a glutamate residue (D315E) manifested significantly reduced Fe(II) binding, yet maintained catalytic activity with a 5-fold faster reaction with O2. The results inform on how the precise active site environment of oxygenases can affect rates of O2 activation and provide insights into limiting steps in PHD catalysis.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Ferro/química , Ácidos Cetoglutáricos/química , Oxigênio/química , Domínio Catalítico , Cátions Bivalentes , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Isoquinolinas/química , Cinética , Manganês/química , Mutagênese Sítio-Dirigida , Oligopeptídeos/química , Ligação Proteica , Água/química , Zinco/química
9.
Proc Natl Acad Sci U S A ; 109(18): 6878-81, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22517758

RESUMO

Archaeological bones are usually dated by radiocarbon measurement of extracted collagen. However, low collagen content, contamination from the burial environment, or museum conservation work, such as addition of glues, preservatives, and fumigants to "protect" archaeological materials, have previously led to inaccurate dates. These inaccuracies in turn frustrate the development of archaeological chronologies and, in the Paleolithic, blur the dating of such key events as the dispersal of anatomically modern humans. Here we describe a method to date hydroxyproline found in collagen (~10% of collagen carbon) as a bone-specific biomarker that removes impurities, thereby improving dating accuracy and confidence. This method is applied to two important sites in Russia and allows us to report the earliest direct ages for the presence of anatomically modern humans on the Russian Plain. These dates contribute considerably to our understanding of the emergence of the Mid-Upper Paleolithic and the complex suite of burial behaviors that begin to appear during this period.


Assuntos
Radioisótopos de Carbono/análise , Fósseis , Animais , Biomarcadores/análise , Osso e Ossos/química , Cromatografia Líquida de Alta Pressão , Colágeno/química , Rituais Fúnebres/história , História Antiga , Hidroxiprolina/análise , Espectrometria de Massas , Nitrogênio/análise , Federação Russa , Fatores de Tempo
10.
Rapid Commun Mass Spectrom ; 28(4): 339-50, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24395501

RESUMO

RATIONALE: A sensitive and selective liquid chromatography/mass spectrometry (LC/MS) method is essential for quality control of synthetic oligonucleotides. However, researchers are still searching for improvements to ion-pairing reagents for ion-pairing reversed-phase LC/MS. This study performed a comprehensive comparison of six ion-pairing reagents to determine their performance as mobile phase modifiers for oligonucleotide LC/MS. METHODS: The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine) and hexafluoro-2-propanol were compared by measuring the adduct ion formation, chromatographic separation, and MS signal intensity of four oligonucleotides (10mer to 40mer). The effect of dissolution solvents on MS signal intensity and adduct ion formation was also investigated. RESULTS: Results showed that the type of dissolution solvent can have a signficiant impact on adduct ion formation with oligonucleotides. Results also showed that the maximum separation for small, medium and large oligonucleotides occured when using tripropylamine, N,N-dimethylbutylamine, and dibutylamine, respectively. However, on average 15 mM hexylamine and 50 mM hexafluoro-2-propanol provided the best chromtatographic performance (resolution values: 14.1 ± 0.34, 11.0 ± 0.17, and 6.4 ± 0.11 for the pairs of oligonucleotides T10 & T15, T15 & T25, and T25 & T40, respectively (3 replicates)). CONCLUSIONS: The impact of dissolution solvent on the MS signal of oligonucleotides depends on the type of ion-pairing reagent. Buffer combining 15 mM hexylamine and 50 mM hexafluoro-2-propanol produced the highest overall performance for oligonucleotides (10mer to 40mer) with respect to chromatographic resolution and mass detection.


Assuntos
Cromatografia de Fase Reversa/métodos , Oligonucleotídeos/análise , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminas/química , Soluções Tampão , Etilaminas/química , Indicadores e Reagentes , Propanóis/química
11.
Biochem J ; 449(2): 491-6, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23092293

RESUMO

Histone N(ϵ)-methyl lysine demethylases are important in epigenetic regulation. KDM4E (histone lysine demethylase 4E) is a representative member of the large Fe(II)/2-oxoglutarate- dependent family of human histone demethylases. In the present study we report kinetic studies on the reaction of KDM4E with O2. Steady-state assays showed that KDM4E has a graded response to O2 over a physiologically relevant range of O2 concentrations. Pre-steady state assays implied that KDM4E reacts slowly with O2 and that there are variations in the reaction kinetics which are dependent on the methylation status of the substrate. The results demonstrate the potential for histone demethylase activity to be regulated by oxygen availability.


Assuntos
Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Histonas/química , Humanos , Ferro/metabolismo , Ácidos Cetoglutáricos/química , Cinética , Lisina/metabolismo , Estrutura Molecular , Oxigênio/farmacologia , Peptídeos/metabolismo , Espectrofotometria , Especificidade por Substrato , Succinatos/química , Succinatos/metabolismo
12.
Chem Sci ; 15(7): 2509-2517, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362406

RESUMO

Patients with alcoholism and type 2 diabetes manifest altered metabolism, including elevated aldehyde levels and unusually low asparagine levels. We show that asparagine synthetase B (ASNS), the only human asparagine-forming enzyme, is inhibited by disease-relevant reactive aldehydes, including formaldehyde and acetaldehyde. Cellular studies show non-cytotoxic amounts of reactive aldehydes induce a decrease in asparagine levels. Biochemical analyses reveal inhibition results from reaction of the aldehydes with the catalytically important N-terminal cysteine of ASNS. The combined cellular and biochemical results suggest a possible mechanism underlying the low asparagine levels in alcoholism and diabetes. The results will stimulate research on the biological consequences of the reactions of aldehydes with nucleophilic residues.

13.
Cancer Metab ; 12(1): 5, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350962

RESUMO

BACKGROUND: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS: From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS: PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS: Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.

14.
Microbiome ; 12(1): 89, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745230

RESUMO

BACKGROUND: Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT: Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION: These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.


Assuntos
Fibras na Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Inulina , Camundongos Endogâmicos C57BL , Psyllium , Neoplasias da Bexiga Urinária , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/administração & dosagem , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/patologia , Humanos , Feminino , Lesões por Radiação/prevenção & controle , Intestinos/microbiologia , Intestinos/efeitos da radiação , Linfócitos T CD8-Positivos
15.
Chem Sci ; 14(44): 12498-12505, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020377

RESUMO

Formaldehyde is a pollutant and human metabolite that is toxic at high concentrations. Biological studies on formaldehyde are hindered by its high reactivity and volatility, which make it challenging to deliver quantitatively to cells. Here, we describe the development and validation of a set of N-acyloxymethyl-phthalimides as cell-relevant formaldehyde delivery agents. These esterase-sensitive compounds were similarly or less inhibitory to human cancer cell growth than free formaldehyde but the lead compound increased intracellular formaldehyde concentrations, increased cellular levels of thymidine derivatives (implying increased formaldehyde-mediated carbon metabolism), induced formation of cellular DNA-protein cross-links and induced cell death in pancreatic cancer cells. Overall, our N-acyloxymethyl-phthalimides and control compounds provide an accessible and broadly applicable chemical toolkit for formaldehyde biological research and have potential as cancer therapeutics.

16.
Nat Cardiovasc Res ; 2: 1221-1245, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38500966

RESUMO

Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with ß-alanine buildup. Raising ß-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.

17.
Am J Phys Anthropol ; 148(4): 495-511, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22610935

RESUMO

We present bone collagen amino acid (AA) δ(13)C values for a range of archaeological samples representing four "benchmark" human diet groups (high marine protein consumers, high freshwater protein consumers, terrestrial C(3) consumers, and terrestrial C(4) consumers), a human population with an "unknown" diet, and ruminants. The aim is to establish an interpretive palaeodietary framework for bone collagen AA δ(13)C values, and to assess the extent to which AA δ(13)C values can provide additional dietary information to bulk collagen stable isotope analysis. Results are analyzed to determine the ability of those AAs for which we have a complete set, to discriminate between the diet groups. We show that very strong statistical discrimination is obtained for all interdiet group comparisons. This is often obvious from suitably chosen bivariate plots using δ(113)C values that have been normalized to compensate for interdiet group differences in bulk δ(13)C values. Bi-plots of non-normalized phenylalanine and valine δ(13)C values are useful for distinguishing aquatic diets (marine and freshwater) from terrestrial diets. Our interpretive framework uses multivariate statistics (e.g., discriminant analysis) to optimize the separation of the AA δ(13)C values of the "benchmark"' diet groups, and is capable of accurately assigning external samples to their expected diet groups. With a growing body of AA δ(13)C values, this method is likely to enhance palaeodietary research by allowing the "unknown" diets of populations under investigation to be statistically defined relative to the well-characterized or "known" diets of previously investigated populations.


Assuntos
Osso e Ossos/química , Isótopos de Carbono/análise , Colágeno/química , Comportamento Alimentar , Aminoácidos/análise , Aminoácidos/química , Animais , Arqueologia , Isótopos de Carbono/química , Cervos , Análise Discriminante , Otárias , Humanos , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/química , Paleontologia
18.
Pathogens ; 11(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890016

RESUMO

Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.

19.
Sci Rep ; 12(1): 4579, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301348

RESUMO

Silk has been a luxurious commodity throughout modern human history and sericulture has played an important role in ancient global trade as well as technological and cultural developments. Archaeological findings suggest that prior to domestication of the mulberry silkworm (Bombyx mori) silks were obtained from a range of silk-producing moth species with regional specificity. However, investigating the origins of sericulture is difficult as classification of silks by species-type has proved technically challenging. We therefore investigated a range of methods for solubilising modern and archaeological silks and developed a mass spectrometry-based proteomics method that was able to successfully differentiate modern Bombyx, Antheraea, and Samia-produced silks down to the species level. We subsequently analysed archaeological silk materials excavated from the ancient city of Palmyra. Solubilisation behaviour and proteomic analysis provided evidence that the Palmyra silks were constructed from wild silk derived from Antheraea mylitta, the Indian Tasar silkworm. We believe this is the first species-level biochemical evidence that supports archaeological theories about the production and trade of Indian wild silks in antiquity.


Assuntos
Bombyx , Mariposas , Animais , Bombyx/metabolismo , Espectrometria de Massas , Mariposas/metabolismo , Proteômica , Seda/química
20.
Sci Rep ; 12(1): 14521, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202853

RESUMO

We analysed corrosion from a copper bowl dating from the Roman period (43-410 AD) found in a farm in Kent, UK. Despite its relatively good condition, the interior and exterior surface of the object had areas of deterioration containing green and brown-coloured corrosion which were sampled for characterization by a multi-analytical protocol. Basic copper chlorides atacamite and paratacamite were identified in the context of mineral phases along with chlorobenzenes in the green corrosion. Chlorobenzenes are common soil contaminants in rural areas from the use of pesticides, many of which were banned more than 50 years ago. Here we show that their presence is associated with accelerated corrosion, and this provides a threat to the preservation of archaeological metal objects in the ground.


Assuntos
Cobre , Praguicidas , Cloretos , Clorobenzenos , Cobre/análise , Corrosão , Minerais , Solo , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA