Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(11): 4500-4511, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730845

RESUMO

Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.


Assuntos
Transtorno Bipolar , Animais , Humanos , Camundongos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Mutação de Sentido Incorreto
2.
Nat Immunol ; 12(8): 786-95, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743478

RESUMO

Here we have used a systems biology approach to study innate and adaptive responses to vaccination against influenza in humans during three consecutive influenza seasons. We studied healthy adults vaccinated with trivalent inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). TIV induced higher antibody titers and more plasmablasts than LAIV did. In subjects vaccinated with TIV, early molecular signatures correlated with and could be used to accurately predict later antibody titers in two independent trials. Notably, expression of the kinase CaMKIV at day 3 was inversely correlated with later antibody titers. Vaccination of CaMKIV-deficient mice with TIV induced enhanced antigen-specific antibody titers, which demonstrated an unappreciated role for CaMKIV in the regulation of antibody responses. Thus, systems approaches can be used to predict immunogenicity and provide new mechanistic insights about vaccines.


Assuntos
Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Orthomyxoviridae/imunologia , Imunidade Adaptativa/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Perfilação da Expressão Gênica , Testes de Inibição da Hemaglutinação , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estações do Ano , Biologia de Sistemas/métodos , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
3.
Genes Dev ; 24(20): 2330-42, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20952540

RESUMO

Serotonin is a bioamine regulating bone mass accrual differently depending on its site of synthesis. It decreases accrual when synthesized in the gut, and increases it when synthesized in the brain. The signal transduction events elicited by gut-derived serotonin once it binds to the Htr1b receptor present on osteoblasts have been identified and culminate in cAMP response element-binding protein (CREB) regulation of osteoblast proliferation. In contrast, we do not know how brain-derived serotonin favors bone mass accrual following its binding to the Htr2c receptor on neurons of the hypothalamic ventromedial nucleus (VMH). We show here--through gene expression analysis, serotonin treatment of wild-type and Htr2c(-/-) hypothalamic explants, and cell-specific gene deletion in the mouse--that, following its binding to the Htr2c receptor on VMH neurons, serotonin uses a calmodulin kinase (CaMK)-dependent signaling cascade involving CaMKKß and CaMKIV to decrease the sympathetic tone and increase bone mass accrual. We further show that the transcriptional mediator of these events is CREB, whose phosphorylation on Ser 133 is increased by CaMKIV following serotonin treatment of hypothalamic explants. A microarray experiment identified two genes necessary for optimum sympathetic activity whose expression is regulated by CREB. These results provide a molecular understanding of how serotonin signals in hypothalamic neurons to regulate bone mass accrual and identify CREB as a critical determinant of this function, although through different mechanisms depending on the cell type, neuron, or osteoblast in which it is expressed.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Osteoblastos/metabolismo , Serotonina/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipotálamo/citologia , Hipotálamo/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/farmacologia
4.
Hepatology ; 62(2): 505-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25847065

RESUMO

UNLABELLED: Hepatic cancer is one of the most lethal cancers worldwide. Here, we report that the expression of Ca(2+) /calmodulin-dependent protein kinase kinase 2 (CaMKK2) is significantly up-regulated in hepatocellular carcinoma (HCC) and negatively correlated with HCC patient survival. The CaMKK2 protein is highly expressed in all eight hepatic cancer cell lines evaluated and is markedly up-regulated relative to normal primary hepatocytes. Loss of CaMKK2 function is sufficient to inhibit liver cancer cell growth, and the growth defect resulting from loss of CaMKK2 can be rescued by ectopic expression of wild-type CaMKK2 but not by kinase-inactive mutants. Cellular ablation of CaMKK2 using RNA interference yields a gene signature that correlates with improvement in HCC patient survival, and ablation or pharmacological inhibition of CaMKK2 with STO-609 impairs tumorigenicity of liver cancer cells in vivo. Moreover, CaMKK2 expression is up-regulated in a time-dependent manner in a carcinogen-induced HCC mouse model, and STO-609 treatment regresses hepatic tumor burden in this model. Mechanistically, CaMKK2 signals through Ca(2+) /calmodulin-dependent protein kinase 4 (CaMKIV) to control liver cancer cell growth. Further analysis revealed that CaMKK2 serves as a scaffold to assemble CaMKIV with key components of the mammalian target of rapamycin/ribosomal protein S6 kinase, 70 kDa, pathway and thereby stimulate protein synthesis through protein phosphorylation. CONCLUSION: The CaMKK2/CaMKIV relay is an upstream regulator of the oncogenic mammalian target of rapamycin/ribosomal protein S6 kinase, 70 kDa, pathway, and the importance of this CaMKK2/CaMKIV axis in HCC growth is confirmed by the potent growth inhibitory effects of genetically or pharmacologically decreasing CaMKK2 activity; collectively, these findings suggest that CaMKK2 and CaMKIV may represent potential targets for hepatic cancer.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Animais , Biópsia por Agulha , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Tomografia por Emissão de Pósitrons , Taxa de Sobrevida , Células Tumorais Cultivadas , Regulação para Cima
5.
Mol Cell ; 32(1): 43-56, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18851832

RESUMO

Mixed lineage kinase 3 (MLK3) is a MAP3K that activates the JNK-dependent MAPK pathways. Here, we show that MLK3 is required for cell migration in a manner independent of its role as a MAP3K or MLK3 kinase activity. Rather, MLK3 functions in a regulated way to limit levels of the activated GTPase Rho by binding to the Rho activator, p63RhoGEF/GEFT, which, in turn, prevents its activation by Galphaq. These findings demonstrate a scaffolding role for MLK3 in controlling the extent of Rho activation that modulates cell migration. Moreover, they suggest that MLK3 functions as a network hub that links a number of signaling pathways.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Citoesqueleto/ultraestrutura , Adesões Focais/ultraestrutura , Humanos , Técnicas In Vitro , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Ligação Proteica , Pseudópodes/ultraestrutura , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
6.
Nat Rev Cancer ; 7(5): 381-8, 2007 05.
Artigo em Inglês | MEDLINE | ID: mdl-17410202

RESUMO

PIN1 is a peptidyl-prolyl isomerase that can alter the conformation of phosphoproteins and so affect protein function and/or stability. PIN1 regulates a number of proteins important for cell-cycle progression and, based on gain- and loss-of-function studies, is presumed to operate as a molecular timer of this important process. Therefore, it seems logical that alterations in the level of PIN1 can influence hyperproliferative diseases such as cancer. However, the precise role of PIN1 in cancer remains controversial.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Neoplasias/metabolismo , Peptidilprolil Isomerase/fisiologia , Animais , Ciclina E/metabolismo , Humanos , Modelos Biológicos , Peptidilprolil Isomerase de Interação com NIMA , Proteínas Supressoras de Tumor/metabolismo
7.
J Biol Chem ; 287(38): 31658-65, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22778263

RESUMO

Many cellular Ca(2+)-dependent signaling cascades utilize calmodulin (CaM) as the intracellular Ca(2+) receptor. Ca(2+)/CaM binds and activates a plethora of enzymes, including CaM kinases (CaMKs). CaMKK2 is one of the most versatile of the CaMKs and will phosphorylate and activate CaMKI, CaMKIV, and AMP-activated protein kinase. Cell expression of CaMKK2 is limited, yet CaMKK2 is involved in regulating many important physiological and pathophysiological processes, including energy balance, adiposity, glucose homeostasis, hematopoiesis, inflammation, and cancer. Here, we explore known functions of CaMKK2 and discuss its potential as a target for therapeutic intervention.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica , Tecido Adiposo/enzimologia , Adiposidade , Animais , Feminino , Glucose/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Fígado/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Fosforilação , Neoplasias da Próstata/enzimologia , Ratos , Transdução de Sinais , Distribuição Tecidual
8.
J Biol Chem ; 287(14): 11579-91, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334678

RESUMO

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/deficiência , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Adesão Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Quinase 2 de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Intolerância à Glucose/etiologia , Intolerância à Glucose/prevenção & controle , Hepatite/etiologia , Hepatite/prevenção & controle , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Choque Séptico/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
9.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672221

RESUMO

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.

10.
J Biol Chem ; 286(32): 28066-79, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21669867

RESUMO

Ca(2+)/calmodulin-dependent protein kinase kinase ß (CaMKKß) is a serine/threonine-directed kinase that is activated following increases in intracellular Ca(2+). CaMKKß activates Ca(2+)/calmodulin-dependent protein kinase I, Ca(2+)/calmodulin-dependent protein kinase IV, and the AMP-dependent protein kinase in a number of physiological pathways, including learning and memory formation, neuronal differentiation, and regulation of energy balance. Here, we report the novel regulation of CaMKKß activity by multisite phosphorylation. We identify three phosphorylation sites in the N terminus of CaMKKß, which regulate its Ca(2+)/calmodulin-independent autonomous activity. We then identify the kinases responsible for these phosphorylations as cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3). In addition to regulation of autonomous activity, we find that phosphorylation of CaMKKß regulates its half-life. We find that cellular levels of CaMKKß correlate with CDK5 activity and are regulated developmentally in neurons. Finally, we demonstrate that appropriate phosphorylation of CaMKKß is critical for its role in neurite development. These results reveal a novel regulatory mechanism for CaMKKß-dependent signaling cascades.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/enzimologia , Animais , Células COS , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Meia-Vida , Humanos , Proteínas do Tecido Nervoso/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais/fisiologia
11.
Mol Metab ; 62: 101513, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35562082

RESUMO

OBJECTIVE: The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS: To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS: Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION: CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Resistência à Insulina , Animais , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Ácidos Graxos , Glucose/metabolismo , Resistência à Insulina/fisiologia , Camundongos
12.
Nat Cell Biol ; 6(4): 308-18, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15048125

RESUMO

The stability of c-Myc is regulated by multiple Ras effector pathways. Phosphorylation at Ser 62 stabilizes c-Myc, whereas subsequent phosphorylation at Thr 58 is required for its degradation. Here we show that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase. Furthermore, the absence of Pin1 or inhibition of PP2A stabilizes c-Myc. A stable c-Myc(T58A) mutant that cannot bind Pin1 or be dephosphorylated by PP2A replaces SV40 small T antigen in human cell transformation and tumorigenesis assays. Therefore, small T antigen, which inactivates PP2A, exerts its oncogenic potential by preventing dephosphorylation of c-Myc, resulting in c-Myc stabilization. Thus, Ras-dependent signalling cascades ensure transient and self-limiting accumulation of c-Myc, disruption of which contributes to human cell oncogenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Genes myc/genética , Neoplasias/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequência de Aminoácidos/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Mutação/genética , Peptidilprolil Isomerase de Interação com NIMA , Neoplasias/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-myc/genética , Estabilidade de RNA/genética , Ratos , Serina/metabolismo , Transdução de Sinais/genética , Treonina/metabolismo
13.
Trends Biochem Sci ; 31(1): 13-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16356723

RESUMO

AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in mammalian cells, is, in turn, regulated by long-sought upstream protein kinases (AMPKKs). Following the recent identification of the tumor-suppressor kinase LKB1 as an AMPKK, a broader role for AMPK in metabolic economy has been unveiled by a new body of work from three groups that implicates the Ca(2+)/calmodulin-dependent protein kinase kinases as AMPKKs. We suggest that PKE (protein kinase "energy" or "economy") is now an apt name for this kinase, which regulates both cellular and whole-organism energy homeostasis.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Metabolismo Energético , Homeostase , Modelos Biológicos , Modelos Moleculares , Complexos Multienzimáticos/química , Conformação Proteica , Proteínas Serina-Treonina Quinases/química
14.
J Neurosci ; 29(28): 8901-13, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605628

RESUMO

The Ca(2+)/calmodulin-activated kinases CaMKK2 and CaMKIV are highly expressed in the brain where they play important roles in activating intracellular responses to elevated Ca(2+). To address the biological functions of Ca(2+) signaling via these kinases during brain development, we have examined cerebellar development in mice null for CaMKK2 or CaMKIV. Here, we demonstrate that CaMKK2/CaMKIV-dependent phosphorylation of cAMP response element-binding protein (CREB) correlates with Bdnf transcription, which is required for normal development of cerebellar granule cell neurons. We show in vivo and in vitro that the absence of either CaMKK2 or CaMKIV disrupts the ability of developing cerebellar granule cells in the external granule cell layer to cease proliferation and begin migration to the internal granule cell layer. Furthermore, loss of CaMKK2 or CaMKIV results in decreased CREB phosphorylation (pCREB), Bdnf exon I and IV-containing mRNAs, and brain-derived neurotrophic factor (BDNF) protein in cerebellar granule cell neurons. Reexpression of CaMKK2 or CaMKIV in granule cells that lack CaMKK2 or CaMKIV, respectively, restores pCREB and BDNF to wild-type levels and addition of BDNF rescues granule cell migration in vitro. These results reveal a previously undefined role for a CaMKK2/CaMKIV cascade involved in cerebellar granule cell development and show specifically that Ca(2+)-dependent regulation of BDNF through CaMKK2/CaMKIV is required for this process.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/deficiência , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios/fisiologia , Fatores Etários , Aminoácidos/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Bromodesoxiuridina/metabolismo , Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Morte Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Marcação In Situ das Extremidades Cortadas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/fisiologia , Técnicas de Cultura de Tecidos , Transfecção/métodos
15.
Biochemistry ; 49(19): 4244-54, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20392081

RESUMO

We developed a high-throughput yeast-based assay to screen for chemical inhibitors of Ca(2+)/calmodulin-dependent kinase pathways. After screening two small libraries, we identified the novel antagonist 125-C9, a substituted ethyleneamine. In vitro kinase assays confirmed that 125-C9 inhibited several calmodulin-dependent kinases (CaMKs) competitively with Ca(2+)/calmodulin (Ca(2+)/CaM). This suggested that 125-C9 acted as an antagonist for Ca(2+)/CaM rather than for CaMKs. We confirmed this hypothesis by showing that 125-C9 binds directly to Ca(2+)/CaM using isothermal titration calorimetry. We further characterized binding of 125-C9 to Ca(2+)/CaM and compared its properties with those of two well-studied CaM antagonists: trifluoperazine (TFP) and W-13. Isothermal titration calorimetry revealed that binding of 125-C9 to CaM is absolutely Ca(2+)-dependent, likely occurs with a stoichiometry of five 125-C9 molecules to one CaM molecule, and involves an exchange of two protons at pH 7.0. Binding of 125-C9 is driven overall by entropy and appears to be competitive with TFP and W-13, which is consistent with occupation of similar binding sites. To test the effects of 125-C9 in living cells, we evaluated mitogen-stimulated re-entry of quiescent cells into proliferation and found similar, although slightly better, levels of inhibition by 125-C9 than by TFP and W-13. Our results not only define a novel Ca(2+)/CaM inhibitor but also reveal that chemically unique CaM antagonists can bind CaM by distinct mechanisms but similarly inhibit cellular actions of CaM.


Assuntos
Calmodulina/antagonistas & inibidores , Calmodulina/química , Sítios de Ligação , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Sulfonamidas/química , Trifluoperazina/química
16.
J Immunol ; 181(7): 5015-23, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802105

RESUMO

The chromatin-binding factor high-mobility group box 1 (HMGB1) functions as a proinflammatory cytokine and late mediator of mortality in murine endotoxemia. Although serine phosphorylation of HMGB1 is necessary for nucleocytoplasmic shuttling before its cellular release, the protein kinases involved have not been identified. To investigate if calcium/calmodulin-dependent protein kinase (CaMK) IV serine phosphorylates and mediates the release of HMGB1 from macrophages (Mphi) stimulated with LPS, RAW 264.7 cells or murine primary peritoneal Mphi were incubated with either STO609 (a CaMKIV kinase inhibitor), KN93 (a CaMKIV inhibitor), or we utilized cells from which CaMKIV was depleted by RNA interference (RNAi) before stimulation with LPS. We also compared the LPS response of primary Mphi isolated from CaMKIV(+/+) and CaMKIV(-/-) mice. In both cell types LPS induced activation and nuclear translocation of CaMKIV, which preceded HMGB1 nucleocytoplasmic shuttling. However, Mphi treated with KN93, STO609, or CaMKIV RNAi before LPS showed reduced nucleocytoplasmic shuttling of HMGB1 and release of HMGB1 into the supernatant. Additionally, LPS induced serine phosphorylation of HMGB1, which correlated with an interaction between CaMKIV and HMGB1 and with CaMKIV phosphorylation of HMGB1 in vitro. In cells, both HMGB1 phosphorylation and interaction with CaMKIV were inhibited by STO609 or CaMKIV RNAi. Similarly, whereas CaMKIV(+/+) Mphi showed serine phosphorylation of HMGB1 in response to LPS, this phosphorylation was attenuated in CaMKIV(-/-) Mphi. Collectively, our results demonstrate that CaMKIV promotes the nucleocytoplasmic shuttling of HMGB1 and suggest that the process may be mediated through CaMKIV-dependent serine phosphorylation of HMGB1.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/enzimologia , Transporte Ativo do Núcleo Celular/imunologia , Animais , Linhagem Celular , Células Cultivadas , Citoplasma/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Fosforilação , Serina/metabolismo
17.
Mol Endocrinol ; 22(12): 2759-65, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18845671

RESUMO

This article highlights studies published during the past year that represent significant scientific achievements in the world of calmodulin kinase cascades. Calmodulin is the primary receptor for calcium present in all cells. The binding of its calcium ligand results in a conformational change in calmodulin, which allows the calcium-calmodulin complex to interact with many different targets. In the studies to be summarized in this review, the particular calmodulin cascade involved is shown to be the pathway responsible for important biological responses, including long-term memory formation, dendritic cell survival, hypercapnia, neuronal migration, synapse formation, autophagy, fatty acid oxidation, and energy balance. In some cases, the pathway was previously unknown, and the identification of the calmodulin cascade represents the definition of roles. In other cases, manipulating the cascade has suggested therapeutic approaches to certain diseases, most significantly, type 2 diabetes and obesity.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Pesquisa Biomédica/tendências , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Humanos , Modelos Biológicos , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
18.
Nat Commun ; 10(1): 2450, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164648

RESUMO

Tumor-associated myeloid cells regulate tumor growth and metastasis, and their accumulation is a negative prognostic factor for breast cancer. Here we find calcium/calmodulin-dependent kinase kinase (CaMKK2) to be highly expressed within intratumoral myeloid cells in mouse models of breast cancer, and demonstrate that its inhibition within myeloid cells suppresses tumor growth by increasing intratumoral accumulation of effector CD8+ T cells and immune-stimulatory myeloid subsets. Tumor-associated macrophages (TAMs) isolated from Camkk2-/- mice expressed higher levels of chemokines involved in the recruitment of effector T cells compared to WT. Similarly, in vitro generated Camkk2-/- macrophages recruit more T cells, and have a reduced capability to suppress T cell proliferation, compared to WT. Treatment with CaMKK2 inhibitors blocks tumor growth in a CD8+ T cell-dependent manner, and facilitates a favorable reprogramming of the immune cell microenvironment. These data, credential CaMKK2 as a myeloid-selective checkpoint, the inhibition of which may have utility in the immunotherapy of breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/imunologia , Carcinoma/imunologia , Neoplasias Mamárias Animais/imunologia , Células Mieloides/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/imunologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Proliferação de Células , Quimiocinas/imunologia , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Evasão Tumoral/genética
19.
Endocr Rev ; 24(6): 719-36, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14671000

RESUMO

Many hormones, growth factors, and cytokines regulate proliferation of their target cells. Perhaps the most universal signaling cascades required for proliferative responses are those initiated by transient rises in intracellular calcium (Ca(2+)). The major intracellular receptor for Ca(2+) is calmodulin (CaM). CaM is a small protein that contains four EF-hand Ca(2+) binding sites and is highly conserved among eukaryotes. In all organisms in which the CaM gene has been deleted, it is essential. Although Ca(2+)/CaM is required for proliferation in both unicellular and multicellular eukaryotes, the essential targets of Ca(2+)/CaM-dependent pathways required for cell proliferation remain elusive. Potential Ca(2+)/CaM-dependent targets include the serine/threonine phosphatase calcineurin and the family of multifunctional Ca(2+)/CaM-dependent protein kinases. Whereas these enzymes are essential in Aspergillus nidulans, they are not required under normal growth conditions in yeast. However, in mammalian cells, studies demonstrate that both types of enzymes contribute to the regulation of cell cycle progression. Unfortunately, the mechanism by which Ca(2+)/CaM and its downstream targets, particularly calcineurin and the Ca(2+)/CaM-dependent protein kinases, regulate key cell cycle-regulatory proteins, remains enigmatic. By understanding how Ca(2+)/CaM regulates cell cycle progression in normal mammalian cells, we may gain insight into how hormones control cell division and how cancer cells subvert the need for Ca(2+) and its downstream targets to proliferate.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Ciclo Celular/fisiologia , Animais , Calcineurina/fisiologia , Cálcio/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Divisão Celular/fisiologia , Humanos
20.
Mol Cell Biol ; 25(21): 9687-99, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227615

RESUMO

Steroid receptor coactivator 3 (SRC-3/AIB1) interacts with steroid receptors in a ligand-dependent manner to activate receptor-mediated transcription. A number of intracellular signaling pathways initiated by growth factors and hormones induce phosphorylation of SRC-3, regulating its function and contributing to its oncogenic potential. However, the range of mechanisms by which phosphorylation affects coactivator function remains largely undefined. We demonstrate here that peptidyl-prolyl isomerase 1 (Pin1), which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, interacts selectively with phosphorylated SRC-3. In addition, Pin1 and SRC-3 activate nuclear-receptor-regulated transcription synergistically. Depletion of Pin1 by small interfering RNA (siRNA) reduces hormone-dependent transcription from both transfected reporters and an endogenous steroid receptor target gene. We present evidence that Pin1 modulates interactions between SRC-3 and CBP/p300. The interaction is enhanced in vitro and in vivo by Pin1 and diminished when cellular Pin1 is reduced by siRNA or in stable Pin1-depleted cell lines. Depletion of Pin1 in MCF-7 human breast cancer cells reduces the endogenous estrogen-dependent recruitment of p300 to the promoters of estrogen receptor-dependent genes. Pin1 overexpression enhanced SRC-3 cellular turnover, and depletion of Pin1 stabilized SRC-3. Our results suggest that Pin1 functions as a transcriptional coactivator of nuclear receptors by modulating SRC-3 coactivator protein-protein complex formation and ultimately by also promoting the turnover of the activated SRC-3 oncoprotein.


Assuntos
Acetiltransferases/metabolismo , Proteínas Oncogênicas/metabolismo , Peptidilprolil Isomerase/fisiologia , Receptores de Esteroides/fisiologia , Transativadores/metabolismo , Ativação Transcricional , Aminoácidos/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Estrogênios/fisiologia , Histona Acetiltransferases , Humanos , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Coativador 3 de Receptor Nuclear , Peptidilprolil Isomerase/genética , Fosforilação , Ligação Proteica , RNA Interferente Pequeno/genética , Receptores de Esteroides/genética , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA