Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Cancer ; 152(11): 2410-2423, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602287

RESUMO

Breast cancer (luminal and triple-negative breast cancer [TNBC]) is the most common cancer among women in India and worldwide. Altered sphingolipid levels have emerged as a common phenomenon during cancer progression. However, these alterations are yet to be translated into robust diagnostic and prognostic markers for cancer. Here, we present the quantified sphingolipids of tumor and adjacent-normal tissues from patients of luminal (n = 70) and TNBC (n = 42) subtype from an Indian cohort using targeted liquid chromatography mass spectrometry. We recorded unique sphingolipid profiles that distinguished luminal and TNBC tumors in comparison to adjacent normal tissue by six-sphingolipid signatures. Moreover, systematic comparison of the profiles of luminal and TNBC tumors provided a unique five-sphingolipid signature distinguishing the two subtypes. We further identified key sphingolipids that can stratify grade II and grade III tumors of luminal and TNBC subtype as well as their lymphovascular invasion status. Therefore, we provide the right evidence to develop these candidate sphingolipids as widely acceptable marker/s capable of diagnosing luminal vs TNBC subtype of breast cancer, and predicting the disease severity by identifying the tumor grade.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Esfingolipídeos , Recidiva Local de Neoplasia , Receptores de Estrogênio , Receptores de Progesterona , Biomarcadores Tumorais/análise
2.
Bioconjug Chem ; 28(12): 2942-2953, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29083862

RESUMO

Weakly basic drugs display poor solubility and tend to precipitate in the stomach's acidic environment causing reduced oral bioavailability. Tracing of these orally delivered therapeutic agents using molecular probes is challenged due to their poor absorption in the gastrointestinal tract (GIT). Therefore, we designed a gastric pH stable bile acid derived amphiphile where Tamoxifen (as a model anticancer drug) is conjugated to lithocholic acid derived phospholipid (LCA-Tam-PC). In vitro studies suggested the selective nature of LCA-Tam-PC for cancer cells over normal cells as compared to the parent drug. Fluorescent labeled version of the conjugate (LCA-Tam-NBD-PC) displayed an increased intracellular uptake compared to Tamoxifen. We then investigated the antitumor potential, toxicity, and median survival in 4T1 tumor bearing BALB/c mice upon LCA-Tam-PC treatment. Our studies confirmed a significant reduction in the tumor volume, tumor weight, and reduced hepatotoxicity with a significant increase in median survival on LCA-Tam-PC treatment as compared to the parent drug. Pharmacokinetic and biodistribution studies using LCA-Tam-NBD-PC witnessed the enhanced gut absorption, blood circulation, and tumor site accumulation of phospholipid-drug conjugate leading to improved antitumor activity. Therefore, our studies revealed that conjugation of chemotherapeutic/imaging agents to bile acid phospholipid can provide a new platform for oral delivery and tracing of chemotherapeutic drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacocinética , Diagnóstico por Imagem/métodos , Ácido Litocólico/química , Fígado/efeitos dos fármacos , Fosfolipídeos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Disponibilidade Biológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Tamoxifeno/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia , Tamoxifeno/toxicidade , Distribuição Tecidual
3.
Mol Pharm ; 14(8): 2649-2659, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28665132

RESUMO

Lipid composition in general determines the drug encapsulation efficacy and release kinetics from liposomes that impact the clinical outcomes of cancer therapy. We synthesized three bile acid phospholipids by conjugating the phosphocholine headgroup to the 3'-hydroxyl group of benzylated lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA); and investigated the impact of membrane rigidity on drug encapsulation efficacy, drug release kinetics, anticancer effects, and mice survival. Liposomes with a hydrodynamic diameter of 100-110 nm were subsequently developed using these phospholipids. Fluorescence-probe based quantification revealed a more fluidic nature of DCA-PC- and CA-PC-derived liposomes, whereas the LCA-PC-derived ones are rigid in nature. Doxorubicin encapsulation studies showed ∼75% encapsulation and ∼38% entrapment efficacy of doxorubicin using more fluidic DCA-PC and CA-PC derived liposomes as compared to ∼58% encapsulation and ∼18% entrapment efficacy in the case of LCA-PC derived liposomes. In vivo anticancer studies in the murine model confirmed that doxorubicin entrapped CA-PC liposomes compromise mice survival, whereas rigid drug entrapped LCA-PC-derived-liposomes increased mice survival with ∼2-fold decrease in tumor volume. Pharmacokinetic and biodistribution studies revealed an ∼1.5-fold increase in plasma drug concentration and an ∼4.0-fold rise in tumor accumulation of doxorubicin on treatment with drug entrapped LCA-PC liposomes as compared to doxorubicin alone. In summary, this study presents the impact of bile acid derived liposomes with different rigidities on drug delivery and mice survivability.


Assuntos
Ácidos e Sais Biliares/química , Doxorrubicina/química , Fosfolipídeos/química , Animais , Ácido Cólico/química , Ácido Desoxicólico/química , Portadores de Fármacos/química , Ácido Litocólico/química , Camundongos
4.
Sci Adv ; 9(26): eadf2746, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390205

RESUMO

Treatment of triple-negative breast cancer (TNBC) is challenging because of its "COLD" tumor immunosuppressive microenvironment (TIME). Here, we present a hydrogel-mediated localized delivery of a combination of docetaxel (DTX) and carboplatin (CPT) (called DTX-CPT-Gel therapy) that ensured enhanced anticancer effect and tumor regression on multiple murine syngeneic and xenograft tumor models. DTX-CPT-Gel therapy modulated the TIME by an increase of antitumorigenic M1 macrophages, attenuation of myeloid-derived suppressor cells, and increase of granzyme B+CD8+ T cells. DTX-CPT-Gel therapy elevated ceramide levels in tumor tissues that activated the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-mediated unfolded protein response (UPR). This UPR-mediated activation of apoptotic cell death led to release of damage-associated molecular patterns, thereby activating the immunogenic cell death that could even clear the metastatic tumors. This study provides a promising hydrogel-mediated platform for DTX-CPT therapy that induces tumor regression and effective immune modulation and, therefore, can be explored further for treatment of TNBC.


Assuntos
Hidrogéis , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Morte Celular Imunogênica , Linfócitos T CD8-Positivos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ceramidas , Modelos Animais de Doenças , Imunossupressores , Resposta a Proteínas não Dobradas , Microambiente Tumoral
5.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139656

RESUMO

Sphingolipids are key signaling biomolecules that play a distinct role in cell proliferation, migration, invasion, drug resistance, metastasis, and apoptosis. Triple-negative (ER-PR-HER2-) and triple-positive (ER+PR+HER2+) breast cancer (called TNBC and TPBC, respectively) subtypes reveal distinct phenotypic characteristics and responses to therapy. Here, we present the sphingolipid profiles of BT-474 and MDA-MB-231 breast cancer cell lines representing the TPBC and TNBC subtypes. We correlated the level of different classes of sphingolipids and the expression of their corresponding metabolizing enzymes with the cell proliferation and cell migration properties of BT-474 and MDA-MB-231 cells. Our results showed that each cell type exhibits a unique sphingolipid profile, and common enzymes such as ceramide kinase (CERK, responsible for the synthesis of ceramide-1-phosphates) are deregulated in these cell types. We showed that siRNA/small molecule-mediated inhibition of CERK can alleviate cell proliferation in BT-474 and MDA-MB-231 cells, and cell migration in MDA-MB-231 cells. We further demonstrated that nanoparticle-mediated delivery of CERK siRNA and hydrogel-mediated sustained delivery of CERK inhibitor to the tumor site can inhibit tumor progression in BT-474 and MDA-MB-231 tumor models. In summary, distinct sphingolipid profiles of TPBC and TNBC representing cell lines provide potential therapeutic targets such as CERK, and nanoparticle/hydrogel mediated pharmacological manipulations of such targets can be explored for future cancer therapeutics.

6.
Nanoscale ; 13(31): 13225-13230, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477730

RESUMO

We present a non-immunogenic, injectable, low molecular weight, amphiphilic hydrogel-based drug delivery system (TB-Gel) that can entrap a cocktail of four front-line antitubercular drugs, isoniazid, rifampicin, pyrazinamide, and ethambutol. We showed that TB-Gel is more effective than oral delivery of the combination of four drugs in reducing the mycobacterial infection in mice. Results show that half the dose of chemotherapeutic drugs is sufficient to achieve a comparable therapeutic effect to that of oral delivery.


Assuntos
Antituberculosos , Hidrogéis , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etambutol , Isoniazida , Camundongos , Pirazinamida
7.
Cell Death Dis ; 12(2): 171, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568634

RESUMO

Global dysregulation of RNA splicing and imbalanced sphingolipid metabolism has emerged as promoters of cancer cell transformation. Here, we present specific signature of alternative splicing (AS) events of sphingolipid genes for each breast cancer subtype from the TCGA-BRCA dataset. We show that ceramide synthase 2 (CERS2) undergoes a unique cassette exon event specifically in Luminal B subtype tumors. We validated this exon 8 skipping event in Luminal B cancer cells compared to normal epithelial cells, and in patient-derived tumor tissues compared to matched normal tissues. Differential AS-based survival analysis shows that this AS event of CERS2 is a poor prognostic factor for Luminal B patients. As Exon 8 corresponds to catalytic Lag1p domain, overexpression of AS transcript of CERS2 in Luminal B cancer cells leads to a reduction in the level of very-long-chain ceramides compared to overexpression of protein-coding (PC) transcript of CERS2. We further demonstrate that this AS event-mediated decrease of very-long-chain ceramides leads to enhanced cancer cell proliferation and migration. Therefore, our results show subtype-specific AS of sphingolipid genes as a regulatory mechanism that deregulates sphingolipids like ceramides in breast tumors, and can be explored further as a suitable therapeutic target.


Assuntos
Processamento Alternativo , Neoplasias da Mama/enzimologia , Movimento Celular , Proliferação de Células , Ceramidas/metabolismo , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/genética , Invasividade Neoplásica , Transdução de Sinais , Esfingosina N-Aciltransferase/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética
8.
Nanoscale ; 12(35): 18463-18475, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32941570

RESUMO

The release of anticancer drugs in systemic circulation and their associated toxicity are responsible for the poor efficacy of chemotherapy. Therefore, the identification of new chemotherapeutic combinations designed to be released near the tumor site in a sustained manner has the potential to enhance the efficacy and reduce the toxicity associated with chemotherapy. Here, we present the identification of a combination of doxorubicin, a DNA-binding topoisomerase inhibitor, with a naturally occurring triterpenoid, celastrol, that induces a synergistic effect on the apoptosis of colon cancer cells. Hydrogel-mediated sustained release of a combination of doxorubicin and celastrol in a murine tumor model abrogates tumor proliferation, and increases the median survival with enhanced apoptosis and concurrent reduction in proliferation. Sphingolipid profiling (LC-MS/MS) of treated tumors showed that the combination of celastrol and doxorubicin induces global changes in the expression of sphingolipids with an increase in levels of ceramides. We further demonstrate that this dual drug combination induces a significant increase in the expression of ceramide synthase 1, 4, and 6, thereby increasing the level of ceramides that contribute to the synergistic apoptotic effect. Therefore, hydrogel-mediated localized delivery of a combination of celastrol and doxorubicin provides a new therapeutic combination that induces a sphingolipid-mediated synergistic effect against colon cancer.


Assuntos
Neoplasias , Triterpenos , Animais , Ceramidas , Cromatografia Líquida , Doxorrubicina/farmacologia , Hidrogéis , Camundongos , Triterpenos Pentacíclicos , Espectrometria de Massas em Tandem , Triterpenos/farmacologia , Regulação para Cima
9.
ACS Cent Sci ; 5(10): 1648-1662, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31660434

RESUMO

Rapid proliferation of cancer cells assisted by endothelial cell-mediated angiogenesis and acquired inflammation at the tumor microenvironment (TME) lowers the success rate of chemotherapeutic regimens. Therefore, targeting these processes using localized delivery of a minimally toxic drug combination may be a promising strategy. Here, we present engineering of a biocompatible self-assembled lithocholic acid-dipeptide derived hydrogel (TRI-Gel) that can maintain sustained delivery of antiproliferating doxorubicin, antiangiogenic combretastatin-A4 and anti-inflammatory dexamethasone. Application of TRI-Gel therapy to a murine tumor model promotes enhanced apoptosis with a concurrent reduction in angiogenesis and inflammation, leading to effective abrogation of tumor proliferation and increased median survival with reduced drug resistance. In-depth RNA-sequencing analysis showed that TRI-Gel therapy induced transcriptome-wide alternative splicing of many genes responsible for oncogenic transformation including sphingolipid genes. We demonstrate that TRI-Gel therapy targets the reversal of a unique intron retention event in ß-glucocerebrosidase 1 (Gba1), thereby increasing the availability of functional Gba1 protein. An enhanced Gba1 activity elevates ceramide levels responsible for apoptosis and decreases glucosylceramides to overcome drug resistance. Therefore, TRI-Gel therapy provides a unique system that affects the TME via post-transcriptional modulations of sphingolipid metabolic genes, thereby opening a new and rational approach to cancer therapy.

10.
ACS Biomater Sci Eng ; 5(9): 4764-4775, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448819

RESUMO

Inappropriate and uncontrolled use of antibiotics results in the emergence of antibiotic resistance, thereby threatening the present clinical regimens to treat infectious diseases. Therefore, new antimicrobial agents that can prevent bacteria from developing drug resistance are urgently needed. Selective disruption of bacterial membranes is the most effective strategy for combating microbial infections as accumulation of genetic mutations will not allow for the emergence of drug resistance against these antimicrobials. In this work, we tested cholic acid (CA) derived amphiphiles tethered with different alkyl chains for their ability to combat Gram-positive bacterial infections. In-depth biophysical and biomolecular simulation studies suggested that the amphiphile with a hexyl chain (6) executes more effective interactions with Gram-positive bacterial membranes as compared to other hydrophobic counterparts. Amphiphile 6 is effective against multidrug resistant Gram-positive bacterial strains as well and does not allow the adherence of S. aureus on amphiphile 6 coated catheters implanted in mice. Further, treatment of wound infections with amphiphile 6 clears the bacterial infections. Therefore, the current study presents strategic guidelines in design and development of CA-derived membrane-targeting antimicrobials for Gram-positive bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA