Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ecol Appl ; 32(8): e2704, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35801514

RESUMO

A changing climate is altering ecosystem carbon dynamics with consequences for natural systems and human economies, but there are few tools available for land managers to meaningfully incorporate carbon trajectories into planning efforts. To address uncertainties wrought by rapidly changing conditions, many practitioners adopt resistance and resilience as ecosystem management goals, but these concepts have proven difficult to monitor across landscapes. Here, we address the growing need to understand and plan for ecosystem carbon with concepts of resistance and resilience. Using time series of carbon fixation (n = 103), we evaluate forest management treatments and their relative impacts on resistance and resilience in the context of an expansive and severe natural disturbance. Using subalpine spruce-fir forest with a known management history as a study system, we match metrics of ecosystem productivity (net primary production, g C m-2 year-1 ) with site-level forest structural measurements to evaluate (1) whether past management efforts impacted forest resistance and resilience during a spruce beetle (Dendroctonus rufipennis) outbreak, and (2) how forest structure and physiography contribute to anomalies in carbon trajectories. Our analyses have several important implications. First, we show that the framework we applied was robust for detecting forest treatment impacts on carbon trajectories, closely tracked changes in site-level biomass, and was supported by multiple evaluation methods converging on similar management effects on resistance and resilience. Second, we found that stand species composition, site productivity, and elevation predicted resistance, but resilience was only related to elevation and aspect. Our analyses demonstrate application of a practical approach for comparing forest treatments and isolating specific site and physiographic factors associated with resistance and resilience to biotic disturbance in a forest system, which can be used by managers to monitor and plan for both outcomes. More broadly, the approach we take here can be applied to many scenarios, which can facilitate integrated management and monitoring efforts.


Assuntos
Ecossistema , Picea , Humanos , Carbono , Florestas , Ciclo do Carbono
2.
New Phytol ; 225(1): 26-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494935

RESUMO

Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.


Assuntos
Carbono/metabolismo , Besouros/fisiologia , Doenças das Plantas/parasitologia , Árvores/fisiologia , Animais , Mudança Climática , Simulação por Computador , Secas , Ecossistema , Florestas , Modelos Teóricos , Casca de Planta/imunologia , Casca de Planta/parasitologia , Casca de Planta/fisiologia , Árvores/imunologia , Árvores/parasitologia
3.
Glob Chang Biol ; 26(7): 4068-4078, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279395

RESUMO

Relationships between gross primary productivity (GPP) and the remotely sensed photochemical reflectance index (PRI) suggest that time series of foliar PRI may provide insight into climate change effects on carbon cycling. However, because a large fraction of carbon assimilated via GPP is quickly returned to the atmosphere via respiration, we ask a critical question-can PRI time series provide information about longer term gains in aboveground carbon stocks? Here we study the suitability of PRI time series to understand intra-annual stem-growth dynamics at one of the world's largest terrestrial carbon pools-the boreal forest. We hypothesized that PRI time series can be used to determine the onset (hypothesis 1) and cessation (hypothesis 2) of radial growth and enable tracking of intra-annual tree growth dynamics (hypothesis 3). Tree-level measurements were collected in 2018 and 2019 to link highly temporally resolved PRI observations unambiguously with information on daily radial tree growth collected via point dendrometers. We show that the seasonal onset of photosynthetic activity as determined by PRI time series was significantly earlier (p < .05) than the onset of radial tree growth determined from the point dendrometer time series which does not support our first hypothesis. In contrast, seasonal decline of photosynthetic activity and cessation of radial tree growth was not significantly different (p > .05) when derived from PRI and dendrometer time series, respectively, supporting our second hypothesis. Mixed-effects modeling results supported our third hypothesis by showing that the PRI was a statistically significant (p < .0001) predictor of intra-annual radial tree growth dynamics, and tracked these daily radial tree-growth dynamics in remarkable detail with conditional and marginal coefficients of determination of 0.48 and 0.96 (for 2018) and 0.43 and 0.98 (for 2019), respectively. Our findings suggest that PRI could provide novel insights into nuances of carbon cycling dynamics by alleviating important uncertainties associated with intra-annual vegetation response to climate change.


Assuntos
Tecnologia de Sensoriamento Remoto , Madeira , Fotossíntese , Estações do Ano , Taiga
4.
Glob Chang Biol ; 24(5): 2079-2092, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29105233

RESUMO

Biotic disturbances (BDs, for example, insects, pathogens, and wildlife herbivory) substantially affect boreal and temperate forest ecosystems globally. However, accurate impact assessments comprising larger spatial scales are lacking to date although these are critically needed given the expected disturbance intensification under a warming climate. Hence, our quantitative knowledge on current and future BD impacts, for example, on forest carbon (C) cycling, is strongly limited. We extended a dynamic global vegetation model to simulate ecosystem response to prescribed tree mortality and defoliation due to multiple biotic agents across United States forests during the period 1997-2015, and quantified the BD-induced vegetation C loss, that is, C fluxes from live vegetation to dead organic matter pools. Annual disturbance fractions separated by BD type (tree mortality and defoliation) and agent (bark beetles, defoliator insects, other insects, pathogens, and other biotic agents) were calculated at 0.5° resolution from aerial-surveyed data and applied within the model. Simulated BD-induced C fluxes totaled 251.6 Mt C (annual mean: 13.2 Mt C year-1 , SD ±7.3 Mt C year-1 between years) across the study domain, to which tree mortality contributed 95% and defoliation 5%. Among BD agents, bark beetles caused most C fluxes (61%), and total insect-induced C fluxes were about five times larger compared to non-insect agents, for example, pathogens and wildlife. Our findings further demonstrate that BD-induced C cycle impacts (i) displayed high spatio-temporal variability, (ii) were dominated by different agents across BD types and regions, and (iii) were comparable in magnitude to fire-induced impacts. This study provides the first ecosystem model-based assessment of BD-induced impacts on forest C cycling at the continental scale and going beyond single agent-host systems, thus allowing for comparisons across regions, BD types, and agents. Ultimately, a perspective on the potential and limitations of a more process-based incorporation of multiple BDs in ecosystem models is offered.


Assuntos
Ciclo do Carbono , Florestas , Modelos Biológicos , Árvores/fisiologia , Animais , Carbono/metabolismo , Clima , Mudança Climática , Estados Unidos
5.
New Phytol ; 206(1): 91-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25494578

RESUMO

Recently, widespread piñon pine die-off occurred in the southwestern United States. Here we synthesize observational studies of this event and compare findings to expected relationships with biotic and abiotic factors. Agreement exists on the occurrence of drought, presence of bark beetles and increased mortality of larger trees. However, studies disagree about the influences of stem density, elevation and other factors, perhaps related to study design, location and impact of extreme drought. Detailed information about bark beetles is seldom reported and their role is poorly understood. Our analysis reveals substantial limits to our knowledge regarding the processes that produce mortality patterns across space and time, indicating a poor ability to forecast mortality in response to expected increases in future droughts.


Assuntos
Besouros/fisiologia , Pinus/fisiologia , Estresse Fisiológico , Animais , Clima , Secas , Geografia , Caules de Planta , Solo , Sudoeste dos Estados Unidos , Temperatura , Árvores
6.
Ecol Appl ; 22(7): 1876-91, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23210306

RESUMO

Outbreaks of aggressive bark beetle species cause widespread tree mortality, affecting timber production, wildlife habitat, wildfire, forest composition and structure, biogeochemical cycling, and biogeophysical processes. As a result, agencies responsible for forest management in the United States and British Columbia conduct aerial surveys to map these forest disturbances. Here we combined aerial surveys from British Columbia (2001 2010) and the western conterminous United States (1997-2010), produced 1-km2 grids of the area of crown mortality from bark beetle attack, and analyzed spatial and temporal patterns. We converted aerial-survey polygon data for each combination of host type and bark beetle species available in the western United States, and for each bark beetle species available in British Columbia. We converted affected area (which includes live and killed trees) to mortality area (crown area of killed trees) using species-specific crown diameters and the number (U.S.) or percentage (British Columbia) of killed trees. In the United States we also produced an upper estimate of mortality area by forcing the mortality area to match that from high-resolution imagery in Idaho, Colorado, and New Mexico. Resulting adjustment factors of 3.7-20.9 illustrate the underestimate of mortality by the U.S. aerial surveys. The upper estimate, which we suggest is more realistic, better matched the spatial patterns and severity of the British Columbia mortality area. Cumulative mortality area from all bark beetles was 5.46 Mha in British Columbia in 2001-2010 and 0.47-5.37 Mha (lower and upper estimate) in the western conterminous United States during 1997-2010. We note that we report year of detection here; studies that consider year of tree mortality should shift the time series back one year. We conclude by discussing uses and limitations of these data in ecological studies, including uncertainties associated with assumptions in the methods, lack of complete coverage by surveys, and the subjective nature of the survey databases.


Assuntos
Besouros/fisiologia , Monitoramento Ambiental/métodos , Árvores/parasitologia , Animais , Colúmbia Britânica , Ecossistema , Dinâmica Populacional , Fatores de Tempo , Estados Unidos
7.
Mov Ecol ; 8: 39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072330

RESUMO

BACKGROUND: Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to moose (Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem engineers, by regulating forest carbon and structure, below ground nitrogen cycling processes, and predator-prey dynamics. Previous studies showed that during hotter periods, moose displayed stronger selection for wetland habitats, taller and denser forest canopies, and minimized exposure to solar radiation. However, previous studies regarding moose behavioral thermoregulation occurred in Europe or southern moose range in North America. Understanding whether ambient temperature elicits a behavioral response in high-northern latitude moose populations in North America may be increasingly important as these arctic-boreal systems have been warming at a rate two to three times the global mean. METHODS: We assessed how Alaska moose habitat selection changed as a function of ambient temperature using a step-selection function approach to identify habitat features important for behavioral thermoregulation in summer (June-August). We used Global Positioning System telemetry locations from four populations of Alaska moose (n = 169) from 2008 to 2016. We assessed model fit using the quasi-likelihood under independence criterion and conduction a leave-one-out cross validation. RESULTS: Both male and female moose in all populations increasingly, and nonlinearly, selected for denser canopy cover as ambient temperature increased during summer, where initial increases in the conditional probability of selection were initially sharper then leveled out as canopy density increased above ~ 50%. However, the magnitude of selection response varied by population and sex. In two of the three populations containing both sexes, females demonstrated a stronger selection response for denser canopy at higher temperatures than males. We also observed a stronger selection response in the most southerly and northerly populations compared to populations in the west and central Alaska. CONCLUSIONS: The impacts of climate change in arctic-boreal regions increase landscape heterogeneity through processes such as increased wildfire intensity and annual area burned, which may significantly alter the thermal environment available to an animal. Understanding habitat selection related to behavioral thermoregulation is a first step toward identifying areas capable of providing thermal relief for moose and other species impacted by climate change in arctic-boreal regions.

8.
Science ; 370(6517): 712-715, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154141

RESUMO

The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.


Assuntos
Migração Animal , Monitorização de Parâmetros Ecológicos , Aclimatação , Animais , Arquivos , Regiões Árticas , População
9.
Ecol Evol ; 9(15): 8800-8812, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410281

RESUMO

The persistence of wildlife species in fire-prone ecosystems is under increasing pressure from global change, including alterations in fire regimes caused by climate change. However, unburned islands might act to mitigate negative effects of fire on wildlife populations by providing habitat in which species can survive and recolonize burned areas. Nevertheless, the characteristics of unburned islands and their role as potential refugia for the postfire population dynamics of wildlife species remain poorly understood.We used a newly developed unburned island database of the northwestern United States from 1984 to 2014 to assess the postfire response of the greater sage-grouse (Centrocercus urophasianus), a large gallinaceous bird inhabiting the sagebrush ecosystems of North America, in which wildfires are common. Specifically, we tested whether prefire and postfire male attendance trends at mating locations (leks) differed between burned and unburned areas, and to what extent postfire habitat composition at multiple scales could explain such trends.Using time-series of male counts at leks together with spatially explicit fire history information, we modeled whether male attendance was negatively affected by fire events. Results revealed that burned leks often exhibit sustained decline in male attendance, whereas leks within unburned islands or >1.5 km away from fire perimeters tend to show stable or increasing trends.Analyses of postfire habitat composition further revealed that sagebrush vegetation height within 0.8 km around leks, as well elevation within 0.8 km, 6.4 km, and 18 km around leks, had a positive effect on male attendance trends. Moreover, the proportion of the landscape with cheatgrass (Bromus tectorum) cover >8% had negative effects on male attendance trends within 0.8 km, 6.4 km, and 18 km of leks, respectively. Synthesis and applications. Our results indicate that maintaining areas of unburned vegetation within and outside fire perimeters may be crucial for sustaining sage-grouse populations following wildfire. The role of unburned islands as fire refugia requires more attention in wildlife management and conservation planning because their creation, protection, and maintenance may positively affect wildlife population dynamics in fire-prone ecosystems.

10.
Ambio ; 37(7-8): 569-76, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19205180

RESUMO

An increased ability to analyze landscapes in a spatial manner through the use of remote sensing leads to improved capabilities for quantifying human-induced forest fragmentation. Developments of spatially explicit methods in landscape analyses are emerging. In this paper, the image delineation software program eCognition and the spatial pattern analysis program FRAGSTATS were used to quantify patterns of forest fragments on six landscapes across three different climatic regions characterized by different moisture regimes and different influences of human pressure. Our results support the idea that landscapes with higher road and population density are more fragmented; however, there are other, equally influential factors contributing to fragmentation, such as moisture regime, historic land use, and fire dynamics. Our method provided an objective means to characterize landscapes and assess patterns of forest fragments across different forested ecosystems by addressing the limitations of pixel-based classification and incorporating image objects.


Assuntos
Ecossistema , Sistemas de Informação Geográfica , Modelos Biológicos , Árvores , Região do Caribe , Geografia , Humanos , Processamento de Imagem Assistida por Computador , América do Norte , Densidade Demográfica , Comunicações Via Satélite , Clima Tropical
11.
Trends Plant Sci ; 20(2): 114-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25500552

RESUMO

Terrestrial disturbances are accelerating globally, but their full impact is not quantified because we lack an adequate monitoring system. Remote sensing offers a means to quantify the frequency and extent of disturbances globally. Here, we review the current application of remote sensing to this problem and offer a framework for more systematic analysis in the future. We recommend that any proposed monitoring system should not only detect disturbances, but also be able to: identify the proximate cause(s); integrate a range of spatial scales; and, ideally, incorporate process models to explain the observed patterns and predicted trends in the future. Significant remaining challenges are tied to the ecology of disturbances. To meet these challenges, more effort is required to incorporate ecological principles and understanding into the assessments of disturbance worldwide.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental , Fenômenos Fisiológicos Vegetais , Tecnologia de Sensoriamento Remoto , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA