Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126504

RESUMO

Water, renowned for its sustainability and minimal toxicity, is an ideal candidate for environmentally friendly solvent-based microextraction. However, its potential as an extractant solvent in miniaturized sample preparation remains largely unexplored. This paper pioneers using water as the extraction solvent in headspace single-drop microextraction (HS-SDME) for N-nitrosamines from losartan tablets. Autonomous HS-SDME is executed by an Arduino-controlled, lab-made Cartesian robot, using water for the online preconcentration of enriched extracts through direct injection into a column-switching system. Critical experimental parameters influencing HS-SDME performance are systematically explored through univariate and multivariate experiments. While most previously reported methods for determining N-nitrosamines in pharmaceutical formulations rely on highly selective mass spectrometry detection techniques to handle the strong matrix effects typical of pharmaceutical samples, the water-based HS-SDME method efficiently eliminates the interfering effects of a large amount of the pharmaceutical active ingredient and tablet excipients, allowing straightforward analysis using high-performance liquid chromatography with ultraviolet detection (HPLC-UV-Vis). Under optimized conditions, the developed method exhibits linear responses from 100 to 2400 ng g-1, demonstrating appropriate detectability, precision, and accuracy for the proposed application. Additionally, the environmental sustainability of the method is assessed using the AGREEprep methodology, positioning it as an outstanding green alternative for determining hazardous contaminants in pharmaceutical products.

2.
Anal Bioanal Chem ; 415(25): 6165-6176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532864

RESUMO

An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.

3.
J Sep Sci ; 46(17): e2300214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400419

RESUMO

The development of a fast, cost-effective, and efficient microextraction by packed sorbent setup was achieved by combining affordable laboratory-repackable devices of microextraction with a high-throughput cartesian robot. This setup was evaluated for the development of an analytical method to determine N-nitrosamines in losartan tablets. N-nitrosamines pose a significant concern in the pharmaceutical market due to their carcinogenic risk, necessitating their control and quantification in pharmaceutical products. The parameters influencing the performance of this sample preparation for N-nitrosamines were investigated through both univariate and multivariate experiments. Microextractions were performed using just 5.0 mg of carboxylic acid-modified polystyrene divinylbenzene copolymer as the extraction phase. Under the optimized conditions, the automated setup enabled the simultaneous treatment of six samples in less than 20 min, providing reliable analytical confidence for the proposed application. The analytical performance of the automated high-throughput microextraction by the packed sorbent method was evaluated using a matrix-matching calibration. Quantification was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry with chemical ionization at atmospheric pressure. The method exhibited limits of detection as low as 50 ng/g, good linearity, and satisfactory intra-day (1.38-18.76) and inter-day (2.66-20.08) precision. Additionally, the method showed accuracy ranging from 80% to 136% for these impurities in pharmaceutical formulations.


Assuntos
Nitrosaminas , Robótica , Nitrosaminas/análise , Losartan/análise , Espectrometria de Massas em Tandem/métodos , Limite de Detecção , Microextração em Fase Sólida/métodos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Comprimidos
4.
J Sep Sci ; 46(18): e2300373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37582640

RESUMO

Nano-liquid chromatography (nanoLC) is gaining significant attention as a primary analytical technique across various scientific domains. Unlike conventional high-performance LC, nanoLC utilizes columns with inner diameters (i.ds.) usually ranging from 10 to 150 µm and operates at mobile phase flow rates between 10 and 1000 nl/min, offering improved chromatographic performance and detectability. Currently, most exploration of nanoLC has focused on particle-packed columns. Although open tubular LC (OTLC) can provide superior performance, optimized OTLC columns require very narrow i.ds. (< 10 µm) and demand challenging instrumentation. At the moment, these challenges have limited the success of OTLC. Nevertheless, remarkable progress has been made in developing and utilizing OTLC systems featuring narrow columns (< 2 µm). Additionally, significant efforts have been made to explore larger columns (10-75 µm i.d), demonstrating practical applicability in many situations. Due to their perceived advantages, interest in OTLC has resurged in the last two decades. This review provides an updated outlook on the latest developments in OTLC, focusing on instrumental challenges, achievements, and advancements in column technology. Moreover, it outlines selected applications that illustrate the potential of OTLC for performing targeted and untargeted studies.

5.
Anal Bioanal Chem ; 411(29): 7889-7897, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31732788

RESUMO

The present paper describes an original method for the online preconcentration and analysis of ring-substituted amphetamines in urine samples, used on the integration of robot-assisted hollow fiber liquid-phase microextraction (HF-LPME), high-performance liquid chromatography (HPLC), and fluorescence detection (FLD). A lab-made autosampler, actuating a 100-µL syringe and equipped with a three-way solenoid microvalve, allowed the acceptor phase to flow through and be withdrawn from the lumen fiber, enabling the automated online transference of the enriched acceptor phase for chromatographic analysis, through a six-port switching valve. The developed online HF-LPME-LC/FLD method demonstrated high analytical throughput and confidence, facilitating the efficient extraction and determination of the target analytes, with minimal solvent consumption and sample manipulation, in a straightforward way. Sample cleanup, analyte uptake, and analysis were carried out in 14.5 min. Under optimal conditions, automated online HF-LPME showed excellent linearity, precision, and trueness, obtaining intraday RSDs between 2.9 and 9.2% (n = 6) and interday RSDs between 5.3 and 9.3% (n = 6). Enrichment factors (EFs) ranged between 14.2 and 15.7, extraction recoveries (ERs) ranged between 17.7 and 19.5%, and the limits of detection (S/N = 3) were 2.0, 3.0, and 3.0 µg L-1 for MDA, MDMA, and MDEA, respectively. The method proved to be an effortless, rapid, reliable, and environment-friendly approach for the determination of drug abuse in urine samples. Graphical abstract.


Assuntos
Anfetaminas/urina , Cromatografia Líquida de Alta Pressão/métodos , Microextração em Fase Líquida/métodos , Anfetaminas/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
6.
HardwareX ; 15: e00462, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37600064

RESUMO

Preparative liquid chromatography is a technique for separating complex samples or isolating pure compounds from complex extracts. It involves eluting samples through a packed column and selectively collecting or isolating the separated bands in a sequence of fractions. Depending on the column length and the sample complexity, a large number of fractions may be obtained, making fraction collection a laborious and time-consuming process. Manual fraction collection is also tedious, error-prone, less reproducible, and susceptible to contamination. Several commercial and lab-made solutions are available for automated fraction collection, but most systems do not synchronize with the instrument detector and collect fractions at fixed volumes or time intervals. We have assembled a low-cost Arduino-based smart fraction collector that can record the signal from the UV-vis detector of the chromatography instrument and enable the automated selective collection of the targeted bands. The system consists of a robot equipped with position sensors and a 3-way solenoid valve that switches the column effluent between the waste or collection positions. By proper programming, an Arduino board records the detector response and actuates the solenoid valve, the position sensors, and the stepper motors to collect the target chromatographic bands.

7.
J Chromatogr A ; 1595: 66-72, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30803786

RESUMO

A high-throughput and innovative setup has been developed to automate the online integration of single drop microextraction (SDME), liquid chromatography (LC) and high-resolution mass spectrometry (QqToF). SDME and LC were online hyphenated for the first time. SDME was carried out by a lab-made cartesian robot actuating a 100 µL syringe, equipped with a three-way solenoid microvalve that allowed the online transference of the enriched extract to the chromatographic system, through a six-port switching valve. The complete method, including the synchronized robot action, valves, and the analytical instruments, was controlled by an Arduino Mega board. The merits of the proposed setup were demonstrated by the triazines determination in coconut water samples. The most relevant extraction parameters, such as drop size, exposure time, stirring effect, salt addition and pH were systematically investigated. Under optimized conditions (60 µL drop volume and 10 min extraction time), the LC-UV enrichment factors (EF) and the extraction recoveries (ER) ranged between 15.2-18.4 and 11.4-13.8%, respectively. Using the SDME-LC-MS setup, the linear range, detection limit (S/N = 3) and precision (RSD, n = 6 at 0.25 µg L-1 level of concentration) were 0.25-25 µg L-1, 0.10 µg L-1 and 16.8% for simazine; 0.25-25 µg L-1, 0.05 µg L-1 and 14.7% for atrazine; and 0.25-25 µg L-1, 0.05 µg L-1 and 18.5% for propazine, respectively. Although none of the analytes were detected in the evaluated commercial samples, the results indicate that the proposed online SDME-LC setup is a competitive analytical strategy for the determination of target organic compounds in complex matrices.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Líquida , Microextração em Fase Líquida , Compostos Orgânicos/isolamento & purificação , Robótica , Atrazina/análise , Limite de Detecção , Espectrometria de Massas , Reprodutibilidade dos Testes , Simazina/análise , Triazinas/análise
8.
Talanta ; 189: 241-248, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30086913

RESUMO

In this work, the dispersive liquid-liquid microextraction technique based on the solidification of the organic phase (DLLME-SFO) has been automated for the first time. DLLME-SFO is automated by hyphenating a sequential injection analysis (SIA) system with a custom-made robotic phase separator. Automated in-syringe DLLME is followed by phase separation in a 3D printed device integrating a Peltier cell set, mounted on a multi-axis robotic arm. The combined action of the flow system and the robotic arm is controlled by a single software package, enabling the solidification/melting and collection of the organic phase for further analyte quantification. As proof-of-concept, automated DLLME-SFO was applied to the extraction of parabens followed by separation using liquid chromatography, obtaining LODs between 0.3 and 1.3 µg L-1 (4 mL of sample extracted in 1 mL of 1-dodecanol: MeOH, 15:85, v-v). The method showed a high reproducibility, obtaining intraday RSDs between 4.6% and 5.8% (n = 6), and interday RSDs between 5.6% and 8.6% (n = 6). The developed method was evaluated for the determination of parabens in water, urine, saliva, and personal care products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA