Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Inorg Chem ; 60(8): 5694-5703, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33830750

RESUMO

Two metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were considered as containers for bioactive chemicals. We provide a synthesis technique, which allowed the production of these materials suitable for biomedical applications. Both MOFs were characterized as single-phase porous materials composed of nanoparticles (30-65 nm) with a ζ-potential of more than 40 mV in water suspension. D,L-Leucine was applied as a model molecule, which allowed us to trace the mechanism of the loading process. We showed that after synthesis, amino groups of UiO-66-NH2 are coordinated with solvent residuals. It results in a similar route of leucine loading in UiO-66 and UiO-66-NH2 samples. Using joint data of thermogravimetric analysis and calorimetry, infrared spectroscopy, and nitrogen adsorption, we revealed that methyl groups of leucine molecules are responsible for bonding of an MOF matrix. We proposed the formation of bonds between CH3 groups and benzene rings of linkers via CH-π interaction. We also assessed the toxicity of the synthesized MOFs toward HeLa cells at 50 µg/mL after 24 h incubation and revealed no negative effects on the viability of the cells, prompting further biomedical research in the areas of small-molecule delivery and cell signaling and metabolism modulation.


Assuntos
Leucina/química , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Ácidos Ftálicos/química , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Nanopartículas/química , Tamanho da Partícula , Porosidade
2.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371302

RESUMO

Synthesis of the MIL-100 metal-organic framework particles was carried out by hydrothermal (HT) and microwave (MW)-assisted methods. Transmission electron microscopy showed formation of microparticles in the course of hydrothermal synthesis and nanoparticles for microwave-assisted synthesis. Powder X-ray diffraction confirmed formation of larger crystallites for hydrothermal synthesis. Particle aggregation in aqueous solution was observed by dynamic light scattering. However, the stability of both samples could be improved in acetic acid solution. Nitrogen sorption isotherms showed high porosity of the particles. ᶫ-leucine molecule was used as a model molecule for loading in the porous micro- and nanoparticles. Loading was estimated by FTIR spectroscopy and thermogravimetric analysis. UV-VIS spectroscopy quantified ᶫ-leucine release from the particles in aqueous solution. Cytotoxicity studies using the HeLa cell model showed that the original particles were somewhat toxic, but ᶫ-leucine loading ameliorated the toxic effects, likely due to signaling properties of the amino acid.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Leucina/química , Dietilamida do Ácido Lisérgico/análogos & derivados , Estruturas Metalorgânicas/química , Nanopartículas/administração & dosagem , Proliferação de Células , Células HeLa , Humanos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia , Nanopartículas/química
3.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269331

RESUMO

The attempts to develop efficient methods of solar energy conversion into chemical fuel are ongoing amid climate changes associated with global warming. Photo-electrocatalytic (PEC) water splitting and CO2 reduction reactions show high potential to tackle this challenge. However, the development of economically feasible solutions of PEC solar energy conversion requires novel efficient and stable earth-abundant nanostructured materials. The latter are hardly available without detailed understanding of the local atomic and electronic structure dynamics and mechanisms of the processes occurring during chemical reactions on the catalyst-electrolyte interface. This review considers recent efforts to study photo-electrocatalytic reactions using in situ and operando synchrotron spectroscopies. Particular attention is paid to the operando reaction mechanisms, which were established using X-ray Absorption (XAS) and X-ray Photoelectron (XPS) Spectroscopies. Operando cells that are needed to perform such experiments on synchrotron are covered. Classical and modern theoretical approaches to extract structural information from X-ray Absorption Near-Edge Structure (XANES) spectra are discussed.

4.
Materials (Basel) ; 15(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057287

RESUMO

Herein we report the development of a nanocomposite for X-ray-induced photodynamic therapy (X-PDT) and computed tomography (CT) based on PEG-capped GdF3:Tb3+ scintillating nanoparticles conjugated with Rose Bengal photosensitizer via electrostatic interactions. Scintillating GdF3:Tb3+ nanoparticles were synthesized by a facile and cost-effective wet chemical precipitation method. All synthesized nanoparticles had an elongated "spindle-like" clustered morphology with an orthorhombic structure. The structure, particle size, and morphology were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analysis. The presence of a polyethylene glycol (PEG) coating and Rose Bengal conjugates was proved by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and ultraviolet-visible (UV-vis) analysis. Upon X-ray irradiation of the colloidal PEG-capped GdF3:Tb3+-Rose Bengal nanocomposite solution, an efficient fluorescent resonant energy transfer between scintillating nanoparticles and Rose Bengal was detected. The biodistribution of the synthesized nanoparticles in mice after intravenous administration was studied by in vivo CT imaging.

5.
Pharmaceutics ; 14(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35890221

RESUMO

Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core-shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core-shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite's application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.

6.
Nanomaterials (Basel) ; 11(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801472

RESUMO

Innovations often play an essential role in the acceleration of the new functional materials discovery. The success and applicability of the synthesis results with new chemical compounds and materials largely depend on the previous experience of the researcher himself and the modernity of the equipment used in the laboratory. Artificial intelligence (AI) technologies are the next step in developing the solution for practical problems in science, including the development of new materials. Those technologies go broadly beyond the borders of a computer science branch and give new insights and practical possibilities within the far areas of expertise and chemistry applications. One of the attractive challenges is an automated new functional material synthesis driven by AI. However, while having many years of hands-on experience, chemistry specialists have a vague picture of AI. To strengthen and underline AI's role in materials discovery, a short introduction is given to the essential technologies, and the machine learning process is explained. After this review, this review summarizes the recent studies of new strategies that help automate and accelerate the development of new functional materials. Moreover, automatized laboratories' self-driving cycle could benefit from using AI algorithms to optimize new functional nanomaterials' synthetic routes. Despite the fact that such technologies will shape material science in the nearest future, we note the intelligent use of algorithms and automation is required for novel discoveries.

7.
Haematologica ; 92(4): 570-1, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17488674
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA