Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurovirol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822196

RESUMO

Neural damage due to inflammatory activation of macrophages and microglia is a consequence of HIV infection that leads to cognitive dysfunction. The damage is due, in part, to the release of factors that impair neuronal function but the mechanisms that control their release are poorly understood. Previous studies have shown that mature nerve growth factor (NGF) binding to tropomyosin receptor kinase A (TrkA), and proNGF acting through the p75 neurotrophin receptor (p75NTR) differentially control the phenotype of macrophages in response to HIV. However, the mechanisms responsible for these actions are unclear. The current studies demonstrated that in human monocyte-derived macrophages, CCR5 tropic HIV virions interact with the CXCR4 receptor to promote a neurotoxic macrophage phenotype. TrkA cooperatively interacted with CXCR4 to promote quick and dynamic changes in CXCR4 phosphorylation and more stable downstream actin remodeling in the form of membrane ruffles. TrkA signaling also promoted increased moacrophage calcium spiking, and low neurotoxic activity. Disruption of these interactions by HIV led to an alternative podosome-bearing phenotype with minimal calcium signaling and enhanced toxicity. Neurotrophin receptors provide an independent yet cooperative pathway for modifying the actin cytoskeleton in response to chemokines and subsequent degenerative activity. The strong opposing effects of mature and proneurotrophins may provide the opportunity to develop novel therapies that regulate the phenotype of macrophages in the context of HIV infection and perhaps other degenerative diseases.

2.
J Neurovirol ; 27(2): 302-324, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661457

RESUMO

HIV rapidly infects the central nervous system (CNS) and establishes a persistent viral reservoir within microglia, perivascular macrophages and astrocytes. Inefficient control of CNS viral replication by antiretroviral therapy results in chronic inflammation and progressive cognitive decline in up to 50% of infected individuals with no effective treatment options. Neurotrophin based therapies have excellent potential to stabilize and repair the nervous system. A novel non-peptide ligand, LM11A-31, that targets the p75 neurotrophin receptor (p75NTR) has been identified as a small bioavailable molecule capable of strong neuroprotection with minimal side effects. To evaluate the neuroprotective effects of LM11A-31 in a natural infection model, we treated cats chronically infected with feline immunodeficiency virus (FIV) with 13 mg/kg LM11A-31 twice daily over a period of 10 weeks and assessed effects on cognitive functions, open field behaviors, activity, sensory thresholds, plasma FIV, cerebrospinal fluid (CSF) FIV, peripheral blood mononuclear cell provirus, CD4 and CD8 cell counts and general physiology. Between 12 and 18 months post-inoculation, cats began to show signs of neural dysfunction in T maze testing and novel object recognition, which were prevented by LM11A-31 treatment. Anxiety-like behavior was reduced in the open field and no changes were seen in sensory thresholds. Systemic FIV titers were unaffected but treated cats exhibited a log drop in CSF FIV titers. No significant adverse effects were observed under all conditions. The data indicate that LM11A-31 is likely to be a potent adjunctive treatment for the control of neurodegeneration in HIV infected individuals.


Assuntos
Transtornos Cognitivos/virologia , Síndrome de Imunodeficiência Adquirida Felina/complicações , Isoleucina/análogos & derivados , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Gatos , Vírus da Imunodeficiência Felina , Isoleucina/farmacologia , Receptor de Fator de Crescimento Neural/agonistas
3.
J Neuroinflammation ; 17(1): 345, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208151

RESUMO

BACKGROUND: Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS: Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry.  RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION: Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.


Assuntos
Aminoácidos/metabolismo , Endocanabinoides/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Morfina/administração & dosagem , Neuroproteção/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
4.
J Med Chem ; 66(9): 6193-6217, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130343

RESUMO

Highly active antiretroviral therapy (HAART) has revolutionized human immunodeficiency virus (HIV) healthcare, turning it from a terminal to a potentially chronic disease, although some patients can develop severe comorbidities. These include neurological complications, such as HIV-associated neurocognitive disorders (HAND), which result in cognitive and/or motor function symptoms. We now describe the discovery, synthesis, and evaluation of a new class of N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) aimed at avoiding HAND. The most promising molecule, 12126065, exhibited antiviral activity against wild-type HIV-1 in TZM cells (EC50 = 0.24 nM) with low in vitro cytotoxicity (CC50 = 4.8 µM) as well as retained activity against clinically relevant HIV mutants. 12126065 also demonstrated no in vivo acute or subacute toxicity, good in vivo brain penetration, and minimal neurotoxicity in mouse neurons up to 10 µM, with a 50% toxicity concentration (TC50) of >100 µM, well below its EC50.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Animais , Camundongos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/toxicidade , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV
5.
iScience ; 26(6): 106905, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305696

RESUMO

Tau-mediated toxicity is associated with cognitive decline and Alzheimer's disease (AD) progression. In particular, tau post-translational modifications (PTMs) are thought to generate aberrant tau species resulting in neuronal dysfunction. Despite being well characterized in postmortem AD brain, it is unclear how caspase-mediated C-terminal tau cleavage promotes neurodegeneration, as few studies have developed the models to dissect this pathogenic mechanism. Here, we show that proteasome impairment results in cleaved tau accumulation at the post-synaptic density (PSD), a process that is modulated by neuronal activity. Cleaved tau (at residue D421) impairs neuronal firing and causes inefficient initiation of network bursts, consistent with reduced excitatory drive. We propose that reduced neuronal activity, or silencing, is coupled to proteasome dysfunction, which drives cleaved tau accumulation at the PSD and subsequent synaptotoxicity. Our study connects three common themes in the progression of AD: impaired proteostasis, caspase-mediated tau cleavage, and synapse degeneration.

6.
Cell Tissue Res ; 347(2): 443-55, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22281685

RESUMO

Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood-CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood-CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection.


Assuntos
Plexo Corióideo/citologia , Vírus da Imunodeficiência Felina/metabolismo , Macrófagos/citologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Gatos , Movimento Celular , Plexo Corióideo/metabolismo , Plexo Corióideo/virologia , Células Endoteliais/metabolismo , Epitélio/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Linfócitos T/citologia , Linfócitos T/metabolismo
7.
J Neurovirol ; 18(5): 388-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22811264

RESUMO

Combination antiretroviral therapy (CART) has proven to effectively suppress systemic HIV burden, however, poor penetration into the central nervous system (CNS) provides incomplete protection. Although the severity of HIV-associated neurocognitive disorders (HAND) has been reduced, neurological disease is expected to exert an increasing burden as HIV-infected patients live longer. Strategies to enhance penetration of antiretroviral compounds into the CNS could help to control HIV replication in this reservoir but also carries an increased risk of neurotoxicity. Efforts to target antiretroviral compounds to the CNS will have to balance these risks against the potential gain. Unfortunately, little information is available on the actions of antiretroviral compounds in the CNS, particularly at concentrations that provide effective virus suppression. The current studies evaluated the direct effects of 15 antiretroviral compounds on neurons to begin to provide basic neurotoxicity data that will serve as a foundation for the development of dosing and drug selection guidelines. Using sensitive indices of neural damage, we found a wide range of toxicities, with median toxic concentrations ranging from 2 to 10,000 ng/ml. Some toxic concentrations overlapped concentrations currently seen in the CSF but the level of toxicity was generally modest at clinically relevant concentrations. Highest neurotoxicities were associated with abacavir, efavarenz, etravirine, nevaripine, and atazanavir, while the lowest were with darunavir, emtracitabine, tenofovir, and maraviroc. No additive effects were seen with combinations used clinically. These data provide initial evidence useful for the development of treatment strategies that might reduce the risk of antiretroviral neurotoxicity.


Assuntos
Fármacos Anti-HIV/toxicidade , Neurônios/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Dimetil Sulfóxido/farmacologia , Interações Medicamentosas , Feto/citologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/biossíntese , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Ratos Long-Evans
8.
J Neuroimmune Pharmacol ; 17(1-2): 242-260, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34296391

RESUMO

Previous studies indicated that nerve growth factor (NGF) and proNGF differentially regulate the phenotype of macrophages and microglia via actions at tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptors (p75NTR), respectively. The ability of HIV gp120 and virions to induce the secretion of factors toxic to neurons was suppressed by NGF and enhanced by proNGF, suggesting the potential for neurotrophin based "anti-inflammatory" interventions. To investigate the "anti-inflammatory" potential of the p75NTR ligand, LM11A-31, we treated cultured macrophages and microglia with HIV gp120 in the presence or absence of the ligand and evaluated the morphological phenotype, intrinsic calcium signaling, neurotoxic activity and proteins in the secretome. LM11A-31 at 10 nM was able to suppress the release of neurotoxic factors from both monocyte-derived macrophages (MDM) and microglia. The protective effects correlated with a shift in morphology and a unique secretory phenotype rich in growth factors that overrode the actions of HIV gp120. The protein pattern was generally consistent with anti-inflammatory, phagocytic and tissue remodeling functions. Although the toxic factor(s) and the source of the neuroprotection were not identified, the data indicated that an increased degradation of NGF induced by HIV gp120 was likely to contribute to neuronal vulnerability. Although substantial work is still needed to reveal the functions of many proteins in the mononuclear phagocyte secretome, such as growth and differentiation factors, the data clearly indicate that the ligand LM11A-31 has excellent therapeutic potential due to its ability to induce a more protective phenotype that restricts activation by HIV.


Assuntos
Infecções por HIV , Receptor de Fator de Crescimento Neural , Humanos , Ligantes , Ativação de Macrófagos
9.
Front Immunol ; 13: 940095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967446

RESUMO

We recently discovered that (3α,5α)3-hydroxypregnan-20-one (allopregnanolone) inhibits pro-inflammatory toll-like receptor (TLR) activation and cytokine/chemokine production in mouse macrophage RAW264.7 cells. The present studies evaluate neurosteroid actions upon TLR activation in human macrophages from male and female healthy donors. Buffy coat leukocytes were obtained from donors at the New York Blood Center (http://nybloodcenter.org/), and peripheral blood mononuclear cells were isolated and cultured to achieve macrophage differentiation. TLR4 and TLR7 were activated by lipopolysaccharide (LPS) or imiquimod in the presence/absence of allopregnanolone or related neurosteroids and pro-inflammatory markers were detected by ELISA or western blotting. Cultured human monocyte-derived-macrophages exhibited typical morphology, a mixed immune profile of both inflammatory and anti-inflammatory markers, with no sex difference at baseline. Allopregnanolone inhibited TLR4 activation in male and female donors, preventing LPS-induced elevations of TNF-α, MCP-1, pCREB and pSTAT1. In contrast, 3α,5α-THDOC and SGE-516 inhibited the TLR4 pathway activation in female, but not male donors. Allopregnanolone completely inhibited TLR7 activation by imiquimod, blocking IL-1-ß, IL-6, pSTAT1 and pIRF7 elevations in females only. 3α,5α-THDOC and SGE-516 partially inhibited TLR7 activation, only in female donors. The results indicate that allopregnanolone inhibits TLR4 and TLR7 activation in cultured human macrophages resulting in diminished cytokine/chemokine production. Allopregnanolone inhibition of TLR4 activation was found in males and females, but inhibition of TLR7 signals exhibited specificity for female donors. 3α,5α-THDOC and SGE-516 inhibited TLR4 and TLR7 pathways only in females. These studies demonstrate anti-inflammatory effects of allopregnanolone in human macrophages for the first time and suggest that inhibition of pro-inflammatory cytokines/chemokines may contribute to its therapeutic actions.


Assuntos
Ativação de Macrófagos , Neuroesteroides , Animais , Quimiocinas/farmacologia , Citocinas/metabolismo , Feminino , Humanos , Imiquimode/farmacologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Pregnanolona/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like , Receptores Toll-Like
10.
J Neurovirol ; 17(3): 258-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21556959

RESUMO

To begin to unravel the complexity of HIV-associated changes in the brain, broader, multifaceted analyses of cerebrospinal fluid (CSF) are needed that examine a wide range of proteins reflecting different functions. To provide the first broad profiles of protein changes in the CSF of HIV-infected patients, we used antibody arrays to measure 120 cytokines, chemokines, growth factors, and other proteins. CSF from HIV-infected patients with a range of cognitive deficits was compared to CSF from uninfected, cognitively normal patients to begin to identify protein changes associated with HIV infection and neurological disease progression. Uninfected patients showed relatively consistent patterns of protein expression. Highly expressed proteins in CSF included monocyte chemotactic protein-1, tissue inhibitors of metalloproteases, granulocyte colony-stimulating factor, adiponectin, soluble tumor necrosis factor receptor-1, urokinase-type plasminogen activator receptor, and insulin-like growth factor binding protein-2. Inflammatory and anti-inflammatory cytokines were expressed at low levels. HIV-infected patients showed increases in inflammatory proteins (interferon-gamma, tumor necrosis factor-alpha), anti-inflammatory proteins (IL-13), and chemokines but these correlated poorly with neurological status. The strongest correlation with increasing severity of neurological disease was a decline in growth factors, particularly, brain-derived neurotrophic factor and NT-3. These studies illustrate that HIV infection is associated with parallel changes in both inflammatory and neuroprotective proteins in the CSF. The inverse relationship between growth factors and neurological disease severity suggests that a loss of growth factor neuroprotection may contribute to the development of neural damage and may provide useful markers of disease progression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/líquido cefalorraquidiano , Transtornos Cognitivos/psicologia , Citocinas/líquido cefalorraquidiano , Fármacos Neuroprotetores/líquido cefalorraquidiano , Neurotrofina 3/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/virologia , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/virologia , Feminino , Fator Estimulador de Colônias de Granulócitos/líquido cefalorraquidiano , HIV/fisiologia , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Inflamação/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Análise Serial de Proteínas , Receptores Tipo I de Fatores de Necrose Tumoral/líquido cefalorraquidiano , Índice de Gravidade de Doença , Ativador de Plasminogênio Tipo Uroquinase/líquido cefalorraquidiano
11.
Exp Neurol ; 335: 113489, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007293

RESUMO

The persistence of HIV in the central nervous system leads to cognitive deficits in up to 50% of people living with HIV even with systemic suppression by antiretroviral treatment. The interaction of chronic inflammation with age-associated degeneration places these individuals at increased risk of accelerated aging and other neurodegenerative diseases and no treatments are available that effectively halt these processes. The adverse effects of aging and inflammation may be mediated, in part, by an increase in the expression of the p75 neurotrophin receptor (p75NTR) which shifts the balance of neurotrophin signaling toward less protective pathways. To determine if modulation of p75NTR could modify the disease process, we treated HIV gp120 transgenic mice with a small molecule ligand designed to engage p75NTR and downregulate degenerative signaling. Daily treatment with 50 mg/kg LM11A-31 for 4 months suppressed age- and genotype-dependent activation of microglia, increased microtubule associated protein-2 (MAP-2), reduced dendritic varicosities and slowed the loss of parvalbumin immunoreactive neurons in the hippocampus. An age related accumulation of microtubule associated protein Tau was identified in the hippocampus in extracellular clusters that co-expressed p75NTR suggesting a link between Tau and p75NTR. Although the significance of the relationship between p75NTR and Tau is unclear, a decrease in Tau-1 immunoreactivity as gp120 mice entered old age (>16 months) suggests that the Tau may transition to more pathological modifications; a process blocked by LM11A-31. Overall, the effects of LM11A-31 are consistent with strong neuroprotective and anti-inflammatory actions that have significant therapeutic potential.


Assuntos
Proteína gp120 do Envelope de HIV/genética , Doenças Neurodegenerativas/patologia , Receptor de Fator de Crescimento Neural/efeitos dos fármacos , Envelhecimento , Animais , Dendritos/patologia , Feminino , Genótipo , Hipocampo/patologia , Humanos , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Doenças Neurodegenerativas/genética , Neurônios/patologia , Receptor de Fator de Crescimento Neural/genética , Bibliotecas de Moléculas Pequenas , Proteínas tau/genética , Proteínas tau/metabolismo
12.
Cell Rep ; 35(4): 109037, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910013

RESUMO

The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.


Assuntos
Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos
13.
Exp Neurol ; 341: 113699, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33736974

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7-11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845's effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.


Assuntos
Amidoidrolases/antagonistas & inibidores , Doenças Neurodegenerativas/prevenção & controle , Neuroproteção/fisiologia , Fármacos Neuroprotetores/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
14.
iScience ; 23(7): 101255, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32585593

RESUMO

The microtubule-associated tau protein forms pathological inclusions that accumulate in an age-dependent manner in tauopathies including Alzheimer's disease (AD). Since age is the major risk factor for AD, we examined endogenous tau species that evolve during aging in physiological and diseased conditions. In aged mouse brain, we found tau-immunoreactive clusters embedded within structures that are reminiscent of periodic acid-Schiff (PAS) granules. We showed that PAS granules harbor distinct tau species that are more prominent in 3xTg-AD mice. Epitope profiling revealed hypo-phosphorylated rather than hyper-phosphorylated tau commonly observed in tauopathies. High-resolution imaging and 3D reconstruction suggest a link between tau clusters, reactive astrocytes, and microglia, indicating that early tau accumulation may promote neuroinflammation during aging. Using postmortem human brain, we identified tau as a component of corpora amylacea (CA), age-related structures that are functionally analogous to PAS granules. Overall, our study supports neuroimmune dysfunction as a precipitating event in tau pathogenesis.

15.
Sci Rep ; 9(1): 5273, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918278

RESUMO

Age-related degeneration of basal forebrain cholinergic neurons (BFCNs) is linked to cognitive impairment. The p75 neurotrophin receptor (p75NTR) has been proposed to mediate neuronal degeneration in aging. Therefore, we tested the hypothesis that modifying p75NTR function would prevent or reverse aging-related neuronal degeneration using LM11A-31, a small molecule p75NTR modulator that downregulates degenerative and upregulates trophic receptor-associated signaling. Morphological analysis in mice showed loss of BFCN area detectable by 18 months of age. Oral administration of LM11A-31 from age 15 to 18 months resulted in a dose-related preservation of BFCN area and one month of treatment from 17 to 18 months also preserved cell area. To evaluate reversal of established neuronal atrophy, animals were treated from 21 to 25 months of age. Treatment was associated with an increase of cell size to a mean area larger than that observed at 18 months, accompanied by increases in mean MS/VDB neurite length, as well as increased cholinergic fiber density and synaptophysin pre-synaptic marker levels in the hippocampus. These findings support the idea that modulation of p75NTR activity can prevent and potentially reverse age-associated BFCN degeneration. Moreover, this may be achieved therapeutically with orally bioavailable agents such as LM11A-31.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Isoleucina/análogos & derivados , Morfolinas/uso terapêutico , Degeneração Neural/tratamento farmacológico , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Western Blotting , Imunofluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Isoleucina/uso terapêutico , Camundongos , Degeneração Neural/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/metabolismo
16.
Cell Tissue Res ; 334(1): 55-65, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18665397

RESUMO

Trafficking of peripheral blood mononuclear cells (PBMCs) into the brain is a critical step in the initiation of human immunodeficiency virus (HIV)-associated central nervous system disease. To examine potential factors that control trafficking during the earliest stages of infection, PBMC transmigration across a cultured feline brain endothelial cell (BECs) monolayer was measured after selective exposure of various cell types to feline immunodeficiency virus (FIV). Infection of the PBMCs with FIV increased the trafficking of monocytes and CD4 and CD8 T cells. Additional exposure of the BECs to FIV suppressed mean monocyte, CD4 T cell, and CD8 T cell trafficking. B cell trafficking was unaltered by these changing conditions. Subsequent exposure of astrocytes or microglia to FIV altered transmigration of different PBMC subsets in different ways. Treated microglia compared with treated astrocytes decreased monocyte transmigration, whereas B cell transmigration was increased significantly. When both astrocytes and microglia were exposed to FIV, an increase in CD8 T cell transmigration relative to BECs alone, to BECs plus astrocytes, or to BECs plus microglia was demonstrated. Thus, initial exposure of PBMCs to FIV is sufficient to induce a general increase in trafficking, whereas initial exposure of endothelial cells to FIV tends to down-regulate this effect. Selectivity of trafficking of specific PBMC subsets is apparent only after exposure of cells of the central nervous system to FIV in co-culture with the endothelium.


Assuntos
Encéfalo/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Vírus da Imunodeficiência Felina , Leucócitos Mononucleares/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Linfócitos B/imunologia , Linfócitos B/virologia , Encéfalo/citologia , Encéfalo/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Gatos , Células Cultivadas , Células Endoteliais/virologia , Leucócitos Mononucleares/virologia , Microglia/imunologia , Microglia/virologia
17.
Viruses ; 10(7)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970792

RESUMO

Environmental enrichment is critical for alleviating stress in laboratory felines. However, there is a paucity of information about suitable enrichment for cats. This study aimed to determine preferred enrichment options of individually-housed, castrated male domestic short hair cats (Felis catus) used in a longitudinal study of the effects of chronic feline immunodeficiency virus (FIV) infection, and to determine if the FIV status of the cats affected enrichment preferences. Preference testing was performed with two types of grooming brushes, three different interactive play options, including a laser, ball, and petting interaction with a familiar investigator, and two types of toenail conditioning objects. We found that cats elected to be brushed, preferred social interaction and play with the laser to the ball, and preferred to scratch on an inclined-box toenail conditioning object compared to a horizontal, circular toenail conditioning object. There were individual preferences for enrichment opportunities. There were no differences in preferences between FIV-infected and sham-infected cats. These enrichment preferences may be used to advise laboratory animal facilities and researchers about how to best accommodate the behavioral needs of laboratory cats.


Assuntos
Síndrome de Imunodeficiência Adquirida Felina/virologia , Vírus da Imunodeficiência Felina/fisiologia , Animais , Animais de Laboratório , Gatos
18.
Vet Sci ; 4(1)2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29056673

RESUMO

Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.

19.
Neural Regen Res ; 17(1): 95-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100437
20.
Cell Rep ; 20(9): 2169-2183, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854366

RESUMO

The initiating events that promote tau mislocalization and pathology in Alzheimer's disease (AD) are not well defined, partly because of the lack of endogenous models that recapitulate tau dysfunction. We exposed wild-type neurons to a neuroinflammatory trigger and examined the effect on endogenous tau. We found that tau re-localized and accumulated within pathological neuritic foci, or beads, comprised of mostly hypo-phosphorylated, acetylated, and oligomeric tau. These structures were detected in aged wild-type mice and were enhanced in response to neuroinflammation in vivo, highlighting a previously undescribed endogenous age-related tau pathology. Strikingly, deletion or inhibition of the cytoplasmic shuttling factor HDAC6 suppressed neuritic tau bead formation in neurons and mice. Using mass spectrometry-based profiling, we identified a single neuroinflammatory factor, the metalloproteinase MMP-9, as a mediator of neuritic tau beading. Thus, our study uncovers a link between neuroinflammation and neuritic tau beading as a potential early-stage pathogenic mechanism in AD.


Assuntos
Desacetilase 6 de Histona/metabolismo , Neuritos/enzimologia , Neuritos/patologia , Proteínas tau/metabolismo , Acetilação , Envelhecimento/patologia , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Inflamação/patologia , Espectrometria de Massas , Camundongos Knockout , Fosforilação , Multimerização Proteica , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA