Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436101

RESUMO

A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.

2.
Plant Cell Rep ; 43(7): 185, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951279

RESUMO

The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Espécies Reativas de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
J Appl Toxicol ; 44(8): 1108-1128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38212177

RESUMO

The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.


Assuntos
Carcinógenos , Dietilnitrosamina , Dietilnitrosamina/toxicidade , Humanos , Carcinógenos/toxicidade , Medição de Risco , Animais , Estresse Oxidativo/efeitos dos fármacos , Neoplasias/induzido quimicamente
4.
Funct Integr Genomics ; 23(4): 317, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837547

RESUMO

Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.


Assuntos
MicroRNAs , Oryza , Edição de Genes , Sistemas CRISPR-Cas , Oryza/genética , Oryza/metabolismo , Fenótipo , Grão Comestível/genética , MicroRNAs/metabolismo , Genoma de Planta
5.
Microb Ecol ; 86(1): 49-74, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657425

RESUMO

Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.


Assuntos
Ecossistema , Microbiota , Mudança Climática , Solo/química , Florestas , Nitrogênio/análise , Microbiologia do Solo , Carbono
6.
Plant Cell ; 31(7): 1539-1562, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31076540

RESUMO

Cellular calcium elevation is an important signal used by plants for recognition and signaling of environmental stress. Perception of the generalist insect, Spodoptera litura, by Arabidopsis (Arabidopsis thaliana) activates cytosolic Ca2+ elevation, which triggers downstream defense. However, not all the Ca2+ channels generating the signal have been identified, nor are their modes of action known. We report on a rapidly activated, leaf vasculature- and plasma membrane-localized, CYCLIC NUCLEOTIDE GATED CHANNEL19 (CNGC19), which activates herbivory-induced Ca2+ flux and plant defense. Loss of CNGC19 function results in decreased herbivory defense. The cngc19 mutant shows aberrant and attenuated intravascular Ca2+ fluxes. CNGC19 is a Ca2+-permeable channel, as hyperpolarization of CNGC19-expressing Xenopus oocytes in the presence of both cyclic adenosine monophosphate and Ca2+ results in Ca2+ influx. Breakdown of Ca2+-based defense in cngc19 mutants leads to a decrease in herbivory-induced jasmonoyl-l-isoleucine biosynthesis and expression of JA responsive genes. The cngc19 mutants are deficient in aliphatic glucosinolate accumulation and hyperaccumulate its precursor, methionine. CNGC19 modulates aliphatic glucosinolate biosynthesis in tandem with BRANCHED-CHAIN AMINO ACID TRANSAMINASE4, which is involved in the chain elongation pathway of Met-derived glucosinolates. Furthermore, CNGC19 interacts with herbivory-induced CALMODULIN2 in planta. Together, our work reveals a key mechanistic role for the Ca2+ channel CNGC19 in the recognition of herbivory and the activation of defense signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Canais de Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Herbivoria/fisiologia , Spodoptera/fisiologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Ciclopentanos/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosinolatos/metabolismo , Herbivoria/efeitos dos fármacos , Metionina/metabolismo , Modelos Biológicos , Mutação/genética , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Xenopus
7.
Arch Microbiol ; 205(1): 30, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525087

RESUMO

The demand for nanoparticles is increasing tremendously, and so is the risk of their foreseeable discharge into the environment. Nanoparticles contain a variety of features, including anti-microbial properties, and have been shown to have toxic effects on aquatic organisms previously. However, the causes of nanoparticle toxicity under environmental conditions are still unknown. Exposure to nanoparticles in the environment is unavoidable as nanomaterials are used more prevalent in our daily lives, and as a result, nanotoxicity research is gaining traction. To understand the impact of nanoparticle toxicity on aquatic biota, cyanobacteria (blue-green algae) are an ideal model system. The cyanobacteria play an important role in ecological balance, nutrient cycling, energy flow, biological nitrogen fixation, and environmental remediation, and their susceptibility to nanoparticles can help in making a wise strategy for the mitigation of possible nano-pollution. This article presents an analysis of recent research findings on the toxicological influences of nanoparticles on the growth rate, biochemical changes, ultra-structural changes as well as the nanoparticle toxicity mechanisms in cyanobacteria. The finding suggests that the shading effect, generation of reactive oxygen species, membrane damage and disintegration of pigments are the main reasons for nanoparticle toxicity to the cyanobacteria.


Assuntos
Cianobactérias , Nanopartículas , Nanoestruturas , Nanopartículas/toxicidade , Nanopartículas/química , Espécies Reativas de Oxigênio
8.
BMC Biol ; 19(1): 161, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404410

RESUMO

BACKGROUND: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.


Assuntos
Arabidopsis , Arabidopsis/genética , Parede Celular , Celulose , Mecanismos de Defesa , Etilenos , Fusarium , Regulação da Expressão Gênica de Plantas , Lignina , Doenças das Plantas/genética , Transcriptoma
9.
J Basic Microbiol ; 62(3-4): 395-414, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34516028

RESUMO

Industrial wastewater consists of inorganic and organic toxic pollutants that pose a threat to environmental sustainability. The organic pollutants are a menace to the environment and life forms than the inorganic substances and pose teratogenic, mutagenic, carcinogenic, and other serious detrimental effects on the living entities, moreover, they have a gene-altering effect on aquatic life forms and affect the soil fertility and quality. Removal of varying effluents having recalcitrant contaminants with conventional treatment technologies is strenuous. In contrast to physical and chemical methods, biological treatment methods are environmentally friendly, versatile, efficient, and technically feasible with low operational costs and energy footprints. Biological treatment is a secondary wastewater treatment system that utilizes the metabolic activities of microorganisms to oxidize or reduce inorganic and organic compounds and transform them into dense biomass, which later can be removed by the sedimentation process. Biological treatment in bioreactors is an ex situ method of bioremediation and provides the benefits of continuous monitoring under controlled parameters. This paper attempts to provide a review of bioremediation technologies discussing most concerning widespread bioreactors and advances used for different industrial effluents with their comparative merits and limitations.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biodegradação Ambiental , Reatores Biológicos , Resíduos Industriais , Águas Residuárias , Poluentes Químicos da Água/metabolismo
10.
J Exp Bot ; 71(9): 2752-2768, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31957790

RESUMO

The activation of calcium signaling is a crucial event for perceiving environmental stress. Colonization by Piriformospora indica, a growth-promoting root endosymbiont, activates cytosolic Ca2+ in Arabidopsis roots. In this study, we examined the role and functional relevance of calcium channels responsible for Ca2+ fluxes. Expression profiling revealed that CYCLIC NUCLEOTIDE GATED CHANNEL 19 (CNGC19) is an early-activated gene, induced by unidentified components in P. indica cell-wall extract. Functional analysis showed that loss-of-function of CNGC19 resulted in growth inhibition by P.indica, due to increased colonization and loss of controlled fungal growth. The cngc19 mutant showed reduced elevation of cytosolic Ca2+ in response to P. indica cell-wall extract in comparison to the wild-type. Microbe-associated molecular pattern-triggered immunity was compromised in the cngc19 lines, as evidenced by unaltered callose deposition, reduced cis-(+)-12-oxo-phytodienoic acid, jasmonate, and jasmonoyl isoleucine levels, and down-regulation of jasmonate and other defense-related genes, which contributed to a shift towards a pathogenic response. Loss-of-function of CNGC19 resulted in an inability to modulate indole glucosinolate content during P. indica colonization. CNGC19-mediated basal immunity was dependent on the AtPep receptor, PEPR. CNGC19 was also crucial for P. indica-mediated suppression of AtPep-induced immunity. Our results thus demonstrate that Arabidopsis CNGC19 is an important Ca2+ channel that maintains a robust innate immunity and is crucial for growth-promotion signaling upon colonization by P. indica.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Basidiomycota/fisiologia , Canais de Cálcio , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose
11.
Philos Trans A Math Phys Eng Sci ; 378(2167): 20190446, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32008453

RESUMO

In this study, a superhydrophobic coating on steel surface has been developed with polyurethane, SiO2 nanoparticles and hexadecyltrimethoxysilane by using a spin-coating technique. Characterization of the coated steel surface was done by using the contact angle measurement technique, scanning electron microscopy and Fourier transform infrared spectroscopy. With a water tilt angle of 4° ± 2° and static contact angle of 165° ± 5°, the coated surface shows a superhydrophobic and self-cleaning nature. Chemical, thermal, mechanical stability tests and droplet dynamic studies were done to evaluate performance of the coating. Excellent self-cleaning, anti-fogging and anti-corrosion properties of coated steel surfaces make them ideal for industrial applications. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 3)'.

12.
J Basic Microbiol ; 60(10): 828-861, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32815221

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.


Assuntos
Fenômenos Fisiológicos Bacterianos , Resistência à Doença , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Inoculantes Agrícolas , Bactérias/classificação , Bactérias/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Resistência à Doença/genética , Desenvolvimento Vegetal , Plantas/imunologia , Plantas/metabolismo , Solo/química , Microbiologia do Solo
13.
J Exp Bot ; 70(1): 133-147, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239807

RESUMO

Co-ordination of auxin and cytokinin activities determines root meristem size during post-embryonic development. Calcineurin B-like proteins (CBLs) and their interacting protein kinases (CIPKs) constitute signaling modules that relay calcium signals. Here we report that CIPK25 is involved in regulating the root meristem size. Arabidopsis plants lacking CIPK25 expression displayed a short root phenotype and a slower root growth rate with fewer meristem cells. This phenotype was rescued by restoration of CIPK25 expression. CIPK25 interacted with CBL4 and -5, and displayed strong gene expression in the flower and root, except in the cell proliferation domain in the root apical meristem. Its expression in the root was positively and negatively regulated by auxin and cytokinin, respectively. The cipk25 T-DNA insertion line was compromised in auxin transport and auxin-responsive promoter activity. The cipk25 mutant line showed altered expression of auxin efflux carriers (PIN1 and PIN2) and an Aux/IAA family gene SHY2. Decreased PIN1 and PIN2 expression in the cipk25 mutant line was completely restored when combined with a SHY2 loss-of-function mutation, resulting in recovery of root growth. SHY2 and PIN1 expression was partially regulated by cytokinin even in the absence of CIPK25, suggesting a CIPK25-independent cytokinin signaling pathway(s). Our results revealed that CIPK25 plays an important role in the co-ordination of auxin and cytokinin signaling in root meristem development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/imunologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , DNA Bacteriano/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
14.
Microsc Res Tech ; 87(3): 565-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37971145

RESUMO

Euphorbia neriifolia (EN) is a medicinal plant used to treat a variety of ailments in traditional systems. Despite numerous studies on pharmacological activities, no information was available on the microscopic study of this plant. This is the first study that has been attempted to fill this need by performing the light and field emission scanning electron microscopy (FESEM) of leaf, stem, and latex. The powder microscopy of several organs (leaves, stem, and bark) and exudate (latex) of EN was carried out using safranine, fast green, phloroglucinol, and other standard solutions at different magnifications. The chemical fingerprinting of petroleum ether extract was accomplished by using thin layer chromatography. The optimization of total lipid content from the EN leaf under ultrasound-assisted extraction (UAE) and soxhlet extraction (SE) procedure was determined using response surface methodology (RSM). The studied factors that affect the lipid content were: solvent ratio, extraction temperature, and extraction time. Several notable characteristics observed in the leaf of EN are amphistomatic leaves with anticlinical cell walls, anomocytic stomata, spongy mesophyll cells, elongated palisade cells, angular collenchyma, and U-shaped vascular bundle. The plano-convex midrib is covered by polygonal to oval-shaped cuticles and contains anomocytic stomata. The circular petiole has no trichomes and contains laticifers, crystals, and idioblasts. The circular stem was observed with trichomes, hypodermis, collenchyma, parenchymatous cells, central pith, pentagonal stellar region, cambium, and 2-4 times more xylem that of phloem. All of the powdered plant parts and exudate under study contained trichomes, xylem vessels, wood fibers, cork cells, starch grains, calcium oxalate crystals, idioblasts, lignified cork, tannin content, stone cells, and oil globules. The blackish-green colored petroleum ether extract with semi-solid consistency showed the greatest percent (%) yield of 4% in the latex of EN. The thin layer chromatography (TLC) examination of petroleum ether extract of EN leaf produced a maximum 6 spots with Rf values of 0.16, 0.58, 0.62, 0.73, and 0.96 in the mobile phase of petroleum ether-acetone (8:2). In terms of optimization, the dark green colored UAE extract with semi-sticky consistency showed highest % yield of 4.5% whereas the yellowish green colored SE extract of sticky consistency showed the highest % yield of 4.9%. The findings showed that there were not many differences in the total lipid content between UAE (0.16%) and SE (0.11%). However, the best optimum condition for lipid content extraction analysis was obtained as follows: solvent ratio (PE:HE) 50:50, extraction temperature 50°C, extraction time 45 min for UAE, and solvent ratio (PE:HE) 60:40, extraction temperature 45°C, and extraction time of 24 h for SE. Hence, this study signifies the various noteworthy microscopic features along with the presence of different phytocompounds through TLC and best optimized condition for the extraction of lipids from different parts of EN. As no previous study has been reported, the outcomes obtained from the current study prove to be beneficial in the identification of species, quality control, and detection of any adulteration from the laboratory and commercial samples of EN. RESEARCH HIGHLIGHTS: The percent yield was found to be maximum in latex extract (4%). The leaf pet ether extract was separated into 6 bands with different Rf values. The extracted compounds from Euphorbia neriifolia leaves were categorized into non-polar heat tolerant. The highest total lipid yield (0.1119) was obtained at solvent ratios 60:40 of PE:HE (petroleum ether: petroleum hexane).


Assuntos
Alcanos , Euphorbia , Cromatografia em Camada Fina , Látex , Solventes/química , Extratos Vegetais/química , Microscopia Eletrônica de Varredura , Lipídeos
15.
Plants (Basel) ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891234

RESUMO

To the best of our knowledge, there was no prior report providing valuable preliminary data through a demonstration of the quantitative phytochemical and antioxidant activity of Gymnosporia senegalensis. The total contents of phenols, flavonoid, flavanol, tannin, and saponin were evaluated from different fractions extracted from the leaf, stem, and bark of G. senegalensis by using standards such as gallic acid, quercetin, rutin, tannic acid, and saponin quillaja. The antioxidant potential was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide scavenging (H2O2), superoxide anion radical scavenging, metal chelating ferrous ion, ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC). Data were subjected to half-inhibitory concentration (IC50) and one-way analysis of variance (ANOVA) at p < 0.05 as a significant value. The total phenol content was found to be highest in the chloroform extract of stem at 97.7 ± 0.02 mg GAE/g. The total flavonoid and flavonol contents in the aqueous extract were 97.1 ± 0.03 mg QE/g and 96.7 ± 0.07 mg RE/g, respectively. The total tannin content in the ethyl acetate extract of leaf was 97.5 ± 0.01 mg TAE/g, and the total saponin content in the methanol extract of stem was 79.1 ± 0.06 mg SQE/g. The antioxidant analysis indicated that IC50 and percentage (%) inhibition were dose-dependent and showed the highest antioxidant activity (40.9 ± 0.9 µg/mL) in methanol extract of leaf for DPPH, (88.8 ± 1.12 µg/mL) in the chloroform extract of stem for H2O2, (43.9 ± 0.15 µg/mL) in the aqueous extract of bark for superoxide anion radical scavenging activity, (26.9 ± 0.11 µg/mL) in the chloroform extract of leaf for the metal chelating ferrous ion activity, (7.55 ± 0.10 mg/mL) in the benzene extract of leaf for FRAP, and (2.97 ± 0.01 mg/mL) in the methanol extract of bark for TAC. These results show that G. senegalensis has great potential in antioxidant activities. The isolation and characterization of specific bioactive compounds and the in vivo applicability of such activity await further extensive studies for drug discovery and development.

16.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061862

RESUMO

Leptadenia pyrotechnica Forssk. Decne (LP) is a medicinal herb from the Asclepiadaceae family with many advantageous properties. The goal of this research is to identify, quantify, and evaluate the antioxidant potential of LP to validate its remarkable therapeutic advantages. The hot soxhlet extraction method was employed to prepare different extracts of LP (stem and root). These extracts were evaluated physiochemically to check their impurity, purity, and quality; qualitatively to detect different phytochemicals; and quantitatively for phenol, saponin, tannin, flavonoid, and alkaloid contents. Then, the in vitro antioxidant potential was estimated by DPPH, NO, H2O2 scavenging assays, and MC and FRAP assays. The most prevalent phytochemicals of LP were then analysed by AAS, FT-IR, UV-visible, and GC-MS techniques. A higher extractive yield was shown by LPSE and LPRE (7.37 ± 0.11 and 5.70 ± 0.02). The LP stem showed better physicochemical and qualitative results than the root. The quantitative and in vitro antioxidant results indicated maximal phenols, tannins, and alkaloid contents in LPSE, which was further confirmed by UV-visible, FT-IR, and GC-MS results. The extraction methods (soxhlation or ultrasonication) were optimized by utilizing RSM to determine the impacts of multiple parameters. The study concluded that the plant has remarkable therapeutic advantages to promote additional clinical investigations and the mechanisms of its action.

17.
Sci Total Environ ; 912: 169097, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056665

RESUMO

Climate change imposes various environmental stresses which substantially impact plant growth and productivity. Salinity, drought, temperature extremes, heavy metals, and nutritional imbalances are among several abiotic stresses contributing to high yield losses of crops in various parts of the world, resulting in food insecurity. Many interesting strategies are being researched in the attempt to improve plants' environmental stress tolerance. These include the application of nanoparticles, which have been found to improve plant function under stress situations. Nanotechnology will be a key driver in the upcoming agri-tech and pharmaceutical revolution, which promises a more sustainable, efficient, and resilient agricultural and medical system Nano-fertilizers can help plants utilise nutrients more efficiently by releasing nutrients slowly and sustainably. Plant physiology and nanomaterial features (such as size, shape, and charge) are important aspects influencing the impact on plant growth. Here, we discussed the most promising new opportunities and methodologies for using nanotechnology to increase the efficiency of critical inputs for crop agriculture, as well as to better manage biotic and abiotic stress. Potential development and implementation challenges are highlighted, emphasising the importance of designing suggested nanotechnologies using a systems approach. Finally, the strengths, flaws, possibilities, and risks of nanotechnology are assessed and analysed in order to present a comprehensive and clear picture of the nanotechnology potentials, as well as future paths for nano-based agri-food applications towards sustainability. Future research directions have been established in order to support research towards the long-term development of nano-enabled agriculture and evolution of pharmaceutical industry.


Assuntos
Agricultura , Nanoestruturas , Agricultura/métodos , Nanotecnologia/métodos , Produtos Agrícolas , Estresse Fisiológico
18.
PLoS One ; 19(6): e0304206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905173

RESUMO

Unremitting decline in crop productivity and nutrient recovery are resulted due to dearth of need based fertilizer recommendation over blanket application apart from nitrogen pollution in several means. An advance nutrient management tactic, GreenSeeker (GS) has developed and used in many field crops following the principle of four "R" (right source, right amount at right time, and place) nutrients stewardship technologies. But no studies have been conducted for evaluation of GS in mustard for improving productivity, profitability and nutrient use efficiency (NUE) while minimizing environmental risks. With this objective, a study was planned to conduct an experiment in rabi season of 2021-22 and 2022-23 to assess optical sensor based nitrogen management in mustard over blanket recommendation. The experiment was comprised of ten N treatments including control in randomized block design in triplicates. Research findings indicated that application of GreenSeeker based N significantly improved all growth traits and yield parameters in Brassica juncea L. Per cent enhancement in seed yield, net monetary returns and benefit-cost ratio was higher as 19.3 and 64.5%, 125.1 & 36.2% and 58.8 & 24.4%, respectively under GS based multi split N application over RDF and control. Further, real time N management with GS acquired higher crop production efficiency (CPE) (19.9 kg/day) with lesser cost/kg production (Rs 15.7/kg). Split application of N using GS increased oil yield by 79.9 and 26% over control and recommended dose of fertilizer (RDF) with maximum oil content (42.3%), and increases soil organic carbon (SOC) content by 16.1% from its initial value. Moreover, GS crop sensor could be the probable solution to minimize the crop nitrogen requirement by 15-20% with a yield enhancement of about 18.7% over RDF.


Assuntos
Fertilizantes , Mostardeira , Nitrogênio , Mostardeira/crescimento & desenvolvimento , Mostardeira/efeitos dos fármacos , Nitrogênio/metabolismo , Fertilizantes/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , Agricultura/métodos , Agricultura/economia
19.
Plant Physiol Biochem ; 201: 107843, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354729

RESUMO

The present study is aimed to isolate terpenoids from Gymnosporia senegalensis through analytical and preparative thin-layer chromatography (TLC) and to determine their antioxidant activity using the 2, 2-diphenyl-1- picrylhydrazyl (DPPH) assay and to find out the presence of ß-carotene through high-performance thin-layer chromatography (HPTLC). The validation included linearity, limit of detection (LOD), limit of quantification (LOQ), specificity, precision, recovery, and robustness. All the isolated compounds from TLC exhibited significant antioxidant activity. Among all, isolated compounds from leaf showed highest IC50 values. The highest total terpenoid content (TTC) was found 51.6 ± 0.06 in stem, then 49.02 ± 0.01 in bark, and 46.27 ± 0.01 in leaf. DPPH results indicated that leaf-isolated compound 1 (LIC1) showed the highest IC50 at 7.55 ± 0.02 and stem-isolated compound 2 (SIC2) showed the lowest IC50 at 0.616 ± 0.01 among all the isolated compounds of G. senegalensis. HPTLC separation was carried out on aluminium plates pre-coated with silica gel 60 F254 as the stationary phase and n-hexane: ethyl acetate (6:4, v/v) as the mobile phase. Quantification was achieved based on a densitometric analysis of ß-carotene in the concentration range of 100-500 ng/band at 254 nm. For the calibration plots, linear regression produced r2 = 0.96450 and Rf = 0.27. The LOD and LOQ were 10.15 and 30.76 ng/mL for HPTLC and relative standard deviation were 137.26 ± 2.03 and 160.43 ± 2.95 (intra-day) and 127.88 ± 2.14 and 157.27 ± 1.90 (inter-day) for 200 and 400 ng/band, respectively. The present study shows the presence of various types of terpenoids through TLC whereas the HPTLC results indicated that the developed methods were accurate and precise. It also shows that the approach is appropriate for its intended use in routine quality control testing of commercially available tablet formulations and drug assay to assist both industries and researchers in making important decisions at a reasonable cost. Moreover, due to the use of a safer and more environmentally friendly mobile phase in comparison to the toxic mobile phases used in recent analytical techniques to estimate ß-carotene, this methodology is also secure and sustainable.


Assuntos
Antioxidantes , beta Caroteno , Cromatografia em Camada Fina/métodos , Extratos Vegetais
20.
Nat Prod Res ; : 1-11, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837421

RESUMO

The present investigation was carried out to characterise bioactive components from G. senegalensis by using Fourier-transform infra-red (FT-IR) spectroscopy, 1H-nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The FTIR analysis confirmed the presence of > CH2, -CH3, C = C-C, C-H, C-F, C = C, -C = N-, C-C = N-, and -OH functional groups. The 1H-NMR spectrum revealed the presence of structures of four bioactive compounds i.e. tetratetracontana derivative, ß-carotene, amyrin, and terpineol. GC-MS revealed the presence of different types of high and low molecular weight chemical entities with varying quantities including volatile and essential oil, monoterpenoid, tetraterpenoid, carotenoid, terpenoid, triterpenes, and nortriterpenes. From the results, it could be concluded that G. senegalensis contains various bioactive compounds of biological and pharmacological importance. Overall, this study will provide insight into the characterisation and development of drugs from medicinal plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA