Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 41(7): 4623-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682922

RESUMO

MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant's gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Temperatura Baixa , MicroRNAs/metabolismo , Pressão Osmótica , Proteínas de Plantas/metabolismo , Ligação Proteica , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo
2.
Front Plant Sci ; 13: 1008993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523622

RESUMO

Water scarcity is a significant environmental limitation to plant productivity as drought-induced crop output losses are likely to outnumber losses from all other factors. In this context, triazole compounds have recently been discovered to act as plant growth regulators and multi-stress protectants such as heat, chilling, drought, waterlogging, heavy metals, etc. Paclobutrazol (PBZ) [(2RS, 3RS)-1-(4-chlorophenyl)- 4, 4-dimethyl-2-(1H-1, 2, 4-trizol-1-yl)-pentan-3-ol)] disrupts the isoprenoid pathway by blocking ent-kaurene synthesis, affecting gibberellic acid (GA) and abscisic acid (ABA) hormone levels. PBZ affects the level of ethylene and cytokinin by interfering with their biosynthesis pathways. Through a variety of physiological responses, PBZ improves plant survival under drought. Some of the documented responses include a decrease in transpiration rate (due to reduced leaf area), higher diffusive resistance, relieving reduction in water potential, greater relative water content, less water use, and increased antioxidant activity. We examined and discussed current findings as well as the prospective application of PBZ in regulating crop growth and ameliorating abiotic stresses in this review. Furthermore, the influence of PBZ on numerous biochemical, physiological, and molecular processes is thoroughly investigated, resulting in increased crop yield.

3.
Appl Biochem Biotechnol ; 181(2): 613-626, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27663608

RESUMO

MicroRNAs (miRNAs) are important nonprotein-coding genes involved in almost all biological processes during biotic and abiotic stresses in plants. To investigate the miRNA-mediated plant response to drought stress, two drought-tolerant (C-306 and NI-5439) and two drought-sensitive (HUW-468 and WL-711) wheat genotypes were exposed to 25 % PEG 6000 for 1, 12 and 24 h. Temporal expression patterns of 12 drought-responsive miRNAs and their corresponding nine targets were monitored by quantitative real-time PCR (qRT-PCR). The results showed differential expression of miRNAs and their targets with varying degree of upregulation and downregulation in drought-sensitive genotypes. Likewise, in drought-tolerant wheat genotypes, maximum accumulation of miR393a and miR397a was observed at 1 h of stress. In addition, nearly perfect negative correlation was observed in four miRNA and target pairs (miR164-NAC, miR168a-AGO, miR398-SOD and miR159a-MYB) across all the temporal period studied which could be a major player during drought response in wheat. We, for the first time, validated the presence of miR529a and miR1029 in wheat. These findings gives a clue for temporal and variety-specific differential regulation of miRNAs and their targets in wheat in response to osmotic shock and could help in defining the potential roles of miRNAs in plant adaptation to osmotic stress in future.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/metabolismo , Pressão Osmótica/fisiologia , Proteínas de Plantas/metabolismo , Triticum/fisiologia , Genótipo , MicroRNAs/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA