Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(18): 7309-7320, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094280

RESUMO

Electrocatalytic water treatment has emerged in the limelight of scientific interest, yet its long-term viability remains largely in the dark. Herein, we present for the first time a comprehensive framework on how to optimize pulsed electrolysis to bolster catalyst impurity tolerance and overall longevity. By examining real wastewater constituents and assessing different catalyst designs, we deconvolute the complexities associated with key pulsing parameters to formulate optimal sequences that maximize operational lifetime. We showcase our approach for cathodic H2O2 electrosynthesis, selected for its widespread importance to wastewater treatment. Our results unveil superior performance for a boron-doped carbon catalyst over state-of-the-art oxidized carbon, with high selectivity (>75%) and near complete recoveries in overpotentials even in the presence of highly detrimental Ni2+ and Zn2+ impurities. We then adapt these fine-tuned settings, obtained under a three-electrode arrangement, for practical two-electrode operation using a novel strategy that conserves the desired electrochemical potentials at the catalytic interface. Even under various impurity concentrations, our pulses substantially improve long-term H2O2 production to 287 h and 35 times that attainable via conventional electrolysis. Our findings underscore the versatility of pulsed electrolysis necessary for developing more practical water treatment technologies.


Assuntos
Carbono , Peróxido de Hidrogênio , Boro , Oxirredução , Eletrólise/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA