RESUMO
The field of bioorthogonal chemistry is rapidly growing, presenting successful applications of organic and transition metal-catalysed reactions in cells and living systems (in vivo). The development of such reactions typically proceeds through many iterative steps focused on biocompatibility and fast reaction kinetics to ensure product formation. However, obtaining kinetic data, even under simulated biological (biomimetic) conditions, remains a challenge due to substantial concentrations of salts and biomolecules hampering the use of typically employed solution-phase analytical techniques. In this study, we explored the suitability of gas evolution as a probe to study kinetics under biomimetic conditions. As proof of concept, we show that the progress of two transition metal-catalysed bioorthogonal chemical reactions can be accurately monitored, regardless of the complexity of the medium. As such, we introduce a protocol to gain more insight into the performance of a catalytic system under biomimetic conditions to further progress iterative catalyst development for in vivo applications.
Assuntos
Biomimética , Catálise , Cinética , Biomimética/métodos , Gases/química , Elementos de Transição/química , Materiais Biomiméticos/químicaRESUMO
Performing transition metal-catalyzed reactions in cells and living systems has equipped scientists with a toolbox to study biological processes and release drugs on demand. Thus far, an impressive scope of reactions has been performed in these settings, but many are yet to be introduced. Nitrene transfer presents a rather unexplored new-to-nature reaction. The reaction products are frequently encountered motifs in pharmaceuticals, presenting opportunities for the controlled, intracellular synthesis of drugs. Hence, we explored the transition metal-catalyzed sulfimidation reaction in water for future inâ vivo application. Two Cu(I) complexes containing trispyrazolylborate ligands (Tpx ) were selected, and the catalytic system was evaluated with the aid of three fitness factors. The excellent nitrene transfer reactivity and high chemoselectivity of the catalysts, coupled with good biomolecule compatibility, successfully enabled the sulfimidation of thioethers in aqueous media. We envision that this copper-catalyzed sulfimidation reaction could be an interesting starting point to unlock the potential of nitrene transfer catalysis inâ vivo.
RESUMO
Transition metal radical-type carbene transfer catalysis is a sustainable and atom-efficient method to generate C-C bonds, especially to produce fine chemicals and pharmaceuticals. A significant amount of research has therefore been devoted to applying this methodology, which resulted in innovative routes toward otherwise synthetically challenging products and a detailed mechanistic understanding of the catalytic systems. Furthermore, combined experimental and theoretical efforts elucidated the reactivity of carbene radical complexes and their off-cycle pathways. The latter can imply the formation of N-enolate and bridging carbenes, and undesired hydrogen atom transfer by the carbene radical species from the reaction medium which can lead to catalyst deactivation. In this concept paper, we demonstrate that understanding off-cycle and deactivation pathways not only affords solutions to circumvent them, but can also uncover novel reactivity for new applications. In particular, considering off-cycle species involved in metalloradical catalysis can stimulate further development of radical-type carbene transfer reactions.
RESUMO
Coordination chemistry is a powerful method to synthesize supramolecular cages with distinct features that suit specific applications. This work demonstrates the synthesis of discrete, homochiral FeII 2 L3 cages via chirality-driven self-assembly. Specifically, the installation of chirality - at both the vertices and ligand backbones - allows the formation of discrete, homochiral FeII 2 L3 cages of different sizes via stereochemical control of the iron(II) centers. We observed that larger cages require multiple chiral centra (chiral ligands and vertices). In contrast, the formation of smaller cages is stereoselective with solely chiral ligands. The latter cages can also be formed from two chiral subcomponents, but only when they have matching chirality. Single-crystal X-ray diffraction of these smaller FeII 2 L3 cages revealed several non-covalent interactions as a driving force for narcissistic chiral self-sorting. This expected behavior was confirmed utilizing the shorter ligands in racemic form, yielding discrete, homochiral FeII 2 L3 cages formed in enantiomeric pairs.
RESUMO
We show that the incorporation of a biotinylated Co(TAML) cofactor within streptavidin enables asymmetric radical-type oxygen atom transfer catalysis with improved activity and enantioselectivity.
RESUMO
Immobilizing molecular catalysts on electrodes is vital for electrochemical applications. However, creating robust electrode-catalyst interactions while maintaining good catalytic performance and rapid electron transfer is challenging. Here, without introducing any foreign elements, we show a bottom-up synthetic approach of constructing the conjugated C-C bond between the commercial Vulcan carbon electrode and an organometallic catalyst. Characterization results from FTIR, XPS, aberration-corrected TEM and EPR confirmed the successful and uniform heterogenization of the complex. The synthesized Vulcan-LN4 -Co catalyst is highly active and selective in the oxygen reduction reaction in neutral media, showing an 80 % hydrogen peroxide selectivity and a 0.72â V (vs. RHE) onset potential which significantly outperformed the homogenous counterpart. Based on single-crystal XRD and NMR data, we built a model for density functional theory calculations which showed a nearly optimal binding energy for the *OOH intermediate. Our results show that the direct conjugated C-C bonding is an effective approach for heterogenizing molecular catalysts on carbon, opening new opportunities for employing molecular catalysts in electrochemical applications.
RESUMO
Precise regulation of the electronic states of catalytic sites through molecular engineering is highly desired to boost catalytic performance. Herein, a facile strategy was developed to synthesize efficient oxygen reduction reaction (ORR) catalysts, based on mononuclear iron phthalocyanine supported on commercially available multi-walled carbon nanotubes that contain electron-donating functional groups (FePc/CNT-R, with "R" being -NH2 , -OH, or -COOH). These functional groups acted as axial ligands that coordinated to the Fe site, confirmed by X-ray photoelectron spectroscopy and synchrotron-radiation-based X-ray absorption fine structure. Experimental results showed that FePc/CNT-NH2 , with the most electron-donating -NH2 axial ligand, exhibited the highest ORR activity with a positive onset potential (Eonset =1.0â V vs. reversible hydrogen electrode) and half-wave potential (E1/2 =0.92â V). This was better than the state-of-the-art Pt/C catalyst (Eonset =1.00â V and E1/2 =0.85â V) under the same conditions. Overall, the functionalized FePc/CNT-R assemblies showed enhanced ORR performance in comparison to the non-functionalized FePc/CNT assembly. The origin of this behavior was investigated using density functional theory calculations, which demonstrated that the coordination of electron-donating groups to FePc facilitated the adsorption and activation of oxygen. This study not only demonstrates a series of advanced ORR electrocatalysts, but also introduces a feasible strategy for the rational design of highly active electrocatalysts for other proton-coupled electron transfer reactions.