Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 31(9): 2664-2678, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35239243

RESUMO

Taxon-specific characteristics and extrinsic climatic and geological forces may both shape population differentiation and speciation. In geographically and taxonomically focused investigations, differentiation may occur synchronously as species respond to the same external conditions. Conversely, when evolution is investigated in taxa with largely varying traits, population differentiation and speciation is complex and shaped by interactions of Earth's template and species-specific traits. As such, it is important to characterize evolutionary histories broadly across the tree of life, especially in geographic regions that are exceptionally diverse and under pressures from human activities such as in biodiversity hotspots. Here, using whole-genome sequencing data, we characterize genomic variation in populations of six Ethiopian Highlands forest bird species separated by a lowland biogeographic barrier, the Great Rift Valley (GRV). In all six species, populations on either side of the GRV exhibited significant but varying levels of genetic differentiation. Species' dispersal ability was negatively correlated with levels of population differentiation. Isolation with migration models indicated varied patterns of population differentiation and connectivity among populations of the focal species. We found that demographic histories-estimated for each individual-varied by both species and population but were consistent between individuals of the same species and sampling region. We found that genomic diversity varied by half an order of magnitude across species, and that this variation could largely be explained by the harmonic mean of effective population size over the past 200,000 years. Overall, we found that even in highly dispersive species like birds, the GRV acts as a substantial biogeographic barrier.


Assuntos
Passeriformes , Animais , Demografia , Etiópia , Florestas , Humanos , Passeriformes/genética , Filogenia
2.
Mol Ecol ; 30(10): 2349-2365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738874

RESUMO

The Ethiopian highlands represent a remarkable biodiversity 'hot spot' with a very high number of endemic species, even among vertebrates. Ethiopian representatives of a species complex of speckled brush-furred rats (Lophuromys flavopunctatus sensu lato) inhabit highland habitats ranging from low-elevation forests to Afroalpine grasslands. These may serve as a suitable model for understanding evolutionary processes leading to high genetic and ecological diversity in montane biodiversity hot spots. Here, we analyse the most comprehensive genetic data set of this group, comprising 315 specimens (all nine putative Ethiopian Lophuromys taxa sampled across most of their distribution ranges) genotyped at one mitochondrial and four nuclear markers, and thousands of SNPs from ddRAD sequencing. We performed phylogenetic analyses, delimited species and mapped their distribution and estimated divergence time between species (under the species-tree framework) and mitochondrial lineages. We found significant incongruence between mitochondrial and nuclear phylogenies, most probably caused by multiple interspecific introgression events. We discuss alternative scenarios of Ethiopian Lophuromys evolution, from retention of ancestral polymorphism to hybridization upon secondary contact of partially reproductively isolated lineages leading to reticulate evolution. Finally, we use the diversity of the speckled brush-furred rats for the description of the main biogeographic patterns in the fauna of the Ethiopian highlands.


Assuntos
Biodiversidade , Evolução Biológica , Murinae , Animais , DNA Mitocondrial/genética , Ecossistema , Etiópia , Filogenia
3.
Mol Phylogenet Evol ; 163: 107263, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273505

RESUMO

The tribe Praomyini is a diversified group including 64 species and eight extant rodent genera. They live in a broad spectrum of habitats across whole sub-Saharan Africa. Members of this tribe are often very abundant, they have a key ecological role in ecosystems, they are hosts of many potentially pathogenic microorganisms and comprise numerous agricultural pests. Although this tribe is well supported by both molecular and morphological data, its intergeneric relationships and the species contents of several genera are not yet fully resolved. Recent molecular data suggest that at least three genera in current sense are paraphyletic. However, in these studies the species sampling was sparse and the resolution of relationships among genera was poor, probably due to a fast radiation of the tribe dated to the Miocene and insufficient amount of genetic data. Here we used genomic scale data (395 nuclear loci = 610,965 bp long alignment and mitogenomes = 14,745 bp) and produced the first fully resolved species tree containing most major lineages of the Praomyini tribe (i.e. all but one currently delimited genera and major intrageneric clades). Results of a fossil-based divergence dating analysis suggest that the radiation started during the Messinian stage (ca. 7 Ma) and was likely linked to a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forests, while many others adapted to a broad spectrum of new open lowland and montane habitats that appeared at the beginning of Pliocene. Our analyses clearly confirmed the presence of three polyphyletic genera (Praomys, Myomyscus and Mastomys). We review current knowledge of these three genera and suggest corresponding taxonomic changes. To keep genera monophyletic, we propose taxonomic re-arrangements and delimit four new genera. Furthermore, we discovered a new highly divergent genetic lineage of Praomyini in southwestern Ethiopia, which is described as a new species and genus.


Assuntos
Ecossistema , Murinae , Animais , Evolução Biológica , Etiópia , Filogenia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33956210

RESUMO

It is supposed that the subterranean lifestyle in mammals is reflected in ear morphology and tuning of hearing to low frequencies. We studied two root-rat species to see if their ear morphology reflects the difference in the amount of their surface activity. Whereas the more subterranean Tachyoryctes splendens possesses shorter pinnae as expected, it has smaller bullae compared to the more epigeic Tachyoryctes macrocephalus. The ratio between the eardrum and the stapedial footplate area and the ratio between the mallear and the incudal lever were lower in T. splendens (19.3 ± 0.3 and 1.9 ± 0.0, respectively) than in T. macrocephalus (21.8 ± 0.6 and 2.1 ± 0.1), probably reflecting the latter's higher surface activity. The cochlea in both species has 3.5 coils, yet the basilar membrane is longer in the smaller T. splendens (13.0 ± 0.5 versus 11.4 ± 0.7 mm), which indicates its wider hearing range and/or higher sensitivity (to some frequencies). In both root-rat species, the highest density of outer hair cells (OHC) was in the apical part of the cochlea, while the highest density of inner hair cells (IHC) was in its middle part. This OHC density pattern corresponds with good low-frequency hearing, whereas the IHC pattern suggests sensitivity to higher frequencies.


Assuntos
Orelha/anatomia & histologia , Roedores/anatomia & histologia , Animais
5.
Mol Phylogenet Evol ; 118: 75-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963084

RESUMO

The Ethiopian highlands are the most extensive complex of mountainous habitats in Africa. The presence of the Great Rift Valley (GRV) and the striking elevational ecological gradients inhabited by recently radiated Ethiopian endemics, provide a wide spectrum of model situations for evolutionary studies. The extant species of endemic rodents, often markedly phenotypically differentiated, are expected to possess complex genetic features which evolved asa consequence of the interplay between geomorphology and past climatic changes. In this study, we used the largest available multi-locus genetic dataset of the murid genus Stenocephalemys (347 specimens from ca 40 localities across the known distributional area of all taxa) to investigate the relative importance of disruptive selection, temporary geographic isolation and introgression in their adaptive radiations in the Pleistocene. We confirmed the four main highly supported mitochondrial (mtDNA) clades that were proposed as four species in a previous pilot study: S. albipes is a sister species of S. griseicauda (both lineages are present on both sides of the GRV), while the second clade is formed by two Afro-alpine species, S. albocaudata (east of GRV) and the undescribed Stenocephalemys sp. A (west of GRV). There is a clear elevational gradient in the distribution of the Stenocephalemys taxa with two to three species present at different elevations of the same mountain range. Surprisingly, the nuclear species tree corresponded only a little to the mtDNA tree. Multispecies coalescent models based on six nuclear markers revealed the presence of six separate gene pools (i.e. candidate species), with different topology. Phylogenetic analysis, together with the geographic distribution of the genetic groups, suggests a complex reticulate evolution. We propose a scenario that involves (besides classical allopatric speciation) two cases of disruptive selection along the elevational ecological gradient, multiple crosses of GRV in dry and cold periods of the Pleistocene, followed by hybridization and mtDNA introgression on imperfect reproductive barriers. Spatial expansion of the currently most widespread "albipes" mtDNA clade was followed by population fragmentation, lineage sorting and again by hybridization and mtDNA introgression. Comparison of this genetic structure to other Ethiopian endemic taxa highlight the geographical areas of special conservation concern, where more detailed biodiversity studies should be carried out to prevent many endemic taxa from going extinct even before they are recognized.


Assuntos
Evolução Molecular , Murinae/classificação , Animais , Citocromos b/química , Citocromos b/classificação , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Ecossistema , Etiópia , Haplótipos , Hibridização Genética , Cariótipo , Murinae/anatomia & histologia , Murinae/genética , Filogenia
6.
BMC Evol Biol ; 14: 256, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25496476

RESUMO

BACKGROUND: Rodents of the genus Mus represent one of the most valuable biological models for biomedical and evolutionary research. Out of the four currently recognized subgenera, Nannomys (African pygmy mice, including the smallest rodents in the world) comprises the only original African lineage. Species of this subgenus became important models for the study of sex determination in mammals and they are also hosts of potentially dangerous pathogens. Nannomys ancestors colonized Africa from Asia at the end of Miocene and Eastern Africa should be considered as the place of their first radiation. In sharp contrast with this fact and despite the biological importance of Nannomys, the specimens from Eastern Africa were obviously under-represented in previous studies and the phylogenetic and distributional patterns were thus incomplete. RESULTS: We performed comprehensive genetic analysis of 657 individuals of Nannomys collected at approximately 300 localities across the whole sub-Saharan Africa. Phylogenetic reconstructions based on mitochondrial (CYTB) and nuclear (IRBP) genes identified five species groups and three monotypic ancestral lineages. We provide evidence for important cryptic diversity and we defined and mapped the distribution of 27 molecular operational taxonomic units (MOTUs) that may correspond to presumable species. Biogeographical reconstructions based on data spanning all of Africa modified the previous evolutionary scenarios. First divergences occurred in Eastern African mountains soon after the colonization of the continent and the remnants of these old divergences still occur there, represented by long basal branches of M. (previously Muriculus) imberbis and two undescribed species from Ethiopia and Malawi. The radiation in drier lowland habitats associated with the decrease of body size is much younger, occurred mainly in a single lineage (called the minutoides group, and especially within the species M. minutoides), and was probably linked to aridification and climatic fluctuations in middle Pliocene/Pleistocene. CONCLUSIONS: We discovered very high cryptic diversity in African pygmy mice making the genus Mus one of the richest genera of African mammals. Our taxon sampling allowed reliable phylogenetic and biogeographic reconstructions that (together with detailed distributional data of individual MOTUs) provide a solid basis for further evolutionary, ecological and epidemiological studies of this important group of rodents.


Assuntos
Camundongos/classificação , Camundongos/genética , Filogenia , África Subsaariana , Animais , Evolução Biológica , Filogeografia
7.
Biology (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979086

RESUMO

Climate change causes organisms, including species that act as parasite reservoirs and vectors, to shift their distribution to higher altitudes, affecting wildlife infestation patterns. We studied how ectoparasite distributions varied with altitude using two rodent species, Montemys delectorum and Rhabdomys dilectus, at different elevations (1500-3500 m). The ectoparasites infesting the two rodent species were influenced by the host sex, species, and temperature. We expected host density to predict parasite infestation patterns, because hosts in higher densities should have more parasites due to increased contact between individuals. However, temperature, not host density, affected ectoparasite distribution. Since temperatures decrease with elevation, parasite prevalences and abundances were lower at higher elevations, highlighting that the cold conditions at higher elevations limit reproduction and development-this shows that higher elevation zones are ideal for conservation. The rodents and ectoparasite species described in this study have been reported as vectors of diseases of medical and veterinary importance, necessitating precautions. Moreover, Mount Meru is a refuge for a number of endemic and threatened species on the IUCN Red List. Thus, the parasitic infection can also be an additional risk to these critical species as well as biodiversity in general. Therefore, our study lays the groundwork for future wildlife disease surveillance and biodiversity conservation management actions. The study found a previously uncharacterized mite species in the Mesostigmata group that was previously known to be a parasite of honeybees. Further investigations may shed light into the role of this mite species on Mount Meru.

8.
Emerg Infect Dis ; 18(12): 2047-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171649

RESUMO

We investigated synanthropic small mammals in the Ethiopian Highlands as potential reservoirs for human pathogens and found that 2 rodent species, the Ethiopian white-footed mouse and Awash multimammate mouse, are carriers of novel Mobala virus strains. The white-footed mouse also carries a novel hantavirus, the second Murinae-associated hantavirus found in Africa.


Assuntos
Infecções por Vírus de RNA/veterinária , Vírus de RNA/genética , Doenças dos Roedores/virologia , Animais , Reservatórios de Doenças , Etiópia , Orthohantavírus/classificação , Orthohantavírus/genética , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , RNA Viral , Roedores
9.
Viruses ; 13(6)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199600

RESUMO

In 2012, Tigray orthohantavirus was discovered in Ethiopia, but its seasonal infection in small mammals, and whether it poses a risk to humans was unknown. The occurrence of small mammals, rodents and shrews, in human inhabitations in northern Ethiopia is affected by season and presence of stone bunds. We sampled small mammals in two seasons from low- and high-density stone bund fields adjacent to houses and community-protected semi-natural habitats in Atsbi and Hagere Selam, where Tigray orthohantavirus was first discovered. We collected blood samples from both small mammals and residents using filter paper. The presence of orthohantavirus-reactive antibodies in blood was then analyzed using immunofluorescence assay (human samples) and enzyme linked immunosorbent assays (small mammal samples) with Puumala orthohantavirus as antigen. Viral RNA was detected by RT-PCR using small mammal blood samples. Total orthohantavirus prevalence (antibodies or virus RNA) in the small mammals was 3.37%. The positive animals were three Stenocephalemys albipes rats (prevalence in this species = 13.04%). The low prevalence made it impossible to determine whether season and stone bunds were associated with orthohantavirus prevalence in the small mammals. In humans, we report the first detection of orthohantavirus-reactive IgG antibodies in Ethiopia (seroprevalence = 5.26%). S. albipes lives in close proximity to humans, likely increasing the risk of zoonotic transmission.


Assuntos
Anticorpos Antivirais/sangue , Reservatórios de Doenças/virologia , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/imunologia , Orthohantavírus/imunologia , Doenças dos Roedores/imunologia , Animais , Estudos Transversais , Etiópia/epidemiologia , Feminino , Orthohantavírus/genética , Infecções por Hantavirus/transmissão , Humanos , Imunoglobulina G/sangue , Masculino , Prevalência , RNA Viral/genética , Ratos , Fatores de Risco , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , População Rural
10.
Virus Evol ; 7(1): veab036, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34221451

RESUMO

Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.

11.
Vector Borne Zoonotic Dis ; 19(12): 950-953, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31355714

RESUMO

Orthohantaviruses are RNA viruses that some members are known to cause severe zoonotic diseases in humans. Orthohantaviruses are hosted by rodents, soricomorphs (shrews and moles), and bats. Only two orthohantaviruses associated with murid rodents are known in Africa, Sangassou orthohantavirus (SANGV) in two species of African wood mice (Hylomyscus), and Tigray orthohantavirus (TIGV) in the Ethiopian white-footed rat (Stenocephalemys albipes). In this article, we report evidence that, like SANGV, two strains of TIGV occur in two genetically related rodent species, S. albipes and S. sp. A, occupying different elevational zones in the same mountain. Investigating the other members of the genus Stenocephalemys for TIGV could reveal the real diversity of TIGV in the genus.


Assuntos
Infecções por Hantavirus/veterinária , Orthohantavírus/genética , Doenças dos Roedores/virologia , Animais , Etiópia/epidemiologia , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Humanos , Filogenia , Doenças dos Roedores/epidemiologia , Roedores , Especificidade da Espécie
12.
Integr Zool ; 12(4): 333-344, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27734606

RESUMO

Rodents with prevailing subterranean activity usually play an important role in the ecosystems of which they are a part due to the combined effect of herbivory and soil perturbation. This is the case for the giant root-rat Tachyoryctes macrocephalus endemic to the Afroalpine ecosystem of the Bale Mountains, Ethiopia. We studied the impact of root-rats on various ecosystem features within a 3.5-ha study locality dominated by Alchemilla pasture, which represents an optimal habitat for this species, in 2 periods of a year. The root-rats altered plant species composition, reducing the dominant forb, Alchemilla abyssinica, while enhancing Salvia merjame and a few other species, and reduced vegetation cover, but not the fresh plant biomass. Where burrows were abandoned by root-rats, other rodents took them over and A. abyssinica increased again. Root-rat burrowing created small-scale heterogeneity in soil compactness due to the backfilling of some unused burrow segments. Less compacted soil tended to be rich in nutrients, including carbon, nitrogen and phosphorus, which likely affected the plant growth on sites where the vegetation has been reduced as a result of root-rat foraging and burrowing.


Assuntos
Ecossistema , Muridae , Animais , Ecologia , Etiópia , Nitrogênio , Solo
13.
Infect Genet Evol ; 45: 242-245, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27619058

RESUMO

Hantaviruses, well-known human pathogens, have only recently been identified on the African continent. Tigray virus (TIGV) was found in Ethiopia in 2012 in a Murinae species, Stenocephalemys albipes, but the genetic data obtained at that time were too limited to correctly assess its phylogenetic position within the hantavirus tree. We used high throughput sequencing to determine the complete genome of TIGV, which showed a typical hantavirus organisation. The large (L), medium (M), and small (S) genome segments were found to be 6532, 3594 and 1908 nucleotides long, respectively, and the 5' and 3' termini for all three segments were predicted to form the panhandle-like structure typical for bunyaviruses. Nucleotide-based phylogenetic analyses revealed that all three coding segments cluster in the phylogroup III sensu Guo et al. (2013). However, while TIGV S segment is basal to the Murinae-associated hantaviruses, the M and L segments are basal to the Soricomorpha-associated hantaviruses. TIGV is the first Murinae-borne hantavirus showing this inconsistent segmental clustering in the hantavirus phylogenetic tree. We finally propose non-exclusive scenarios that could explain the original phylogenetic position of TIGV.


Assuntos
Genoma Viral/genética , Infecções por Hantavirus/virologia , Murinae/virologia , Orthohantavírus/genética , Animais , Etiópia , Genômica , Infecções por Hantavirus/veterinária , Sequenciamento de Nucleotídeos em Larga Escala
14.
Vector Borne Zoonotic Dis ; 13(3): 164-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23421888

RESUMO

More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp of the Bartonella RNA polymerase beta subunit (rpoB) gene. We used a generalized linear mixed model to relate the probability of Bartonella infection to species, season, locality, habitat, sex, sexual condition, weight, and ectoparasite infestation. Overall, Bartonella infection prevalence among the small mammals was 34.0%. The probability of Bartonella infection varied significantly with species, sex, sexual condition, and some locality, but not with season, elevation, habitat type, animal weight, and ectoparasite infestation. In total, we found 18 unique Bartonella genotypes clustered into 5 clades, 1 clade exclusively Ethiopian, 2 clades clustered with genotypes from central and eastern Africa, and the remaining 2 clades clustered with genotypes and species from Africa and Asia. The close relatedness of several of our Bartonella genotypes obtained from the 3 dominant rodent species in Tigray with the pathogenic Bartonella elizabethae from Rattus spp. in Asia indicates a potential public health threat.


Assuntos
Infecções por Bartonella/epidemiologia , Bartonella/isolamento & purificação , Variação Genética , Muridae/microbiologia , Doenças dos Roedores/epidemiologia , Musaranhos/microbiologia , Animais , Bartonella/classificação , Bartonella/genética , Infecções por Bartonella/microbiologia , Sequência de Bases , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Reservatórios de Doenças , Etiópia/epidemiologia , Feminino , Genótipo , Especificidade de Hospedeiro , Humanos , Fígado/microbiologia , Masculino , Dados de Sequência Molecular , Filogenia , Prevalência , Doenças dos Roedores/microbiologia , Análise de Sequência de DNA , Fatores Sexuais , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA