RESUMO
Objective: To describe a systematic process of transforming paper registers into a digital system optimized to enhance service provision and fulfil reporting requirements. Methods: We designed a formative study around primary health workers providing reproductive, maternal, newborn and child health services in three countries in Bangladesh, Indonesia and Pakistan. The study ran from November 2014 to June 2018. We developed a prototype digital application after conducting a needs assessment of health workers' responsibilities, workflows, routine data requirements and service delivery needs. Methods included desk reviews, focus group discussions, in-depth interviews; data mapping of paper registers; observations of health workers; co-design workshops with health workers; and usability testing. Finally, we conducted an observational feasibility assessment to monitor uptake of the application. Findings: Researchers reviewed a total of 17 paper registers across the sites, which we transformed into seven modules within a digital application running on mobile devices. Modules corresponded to the services provided, including household enumeration, antenatal care, family planning, immunization, nutrition and child health. A total of 65 health workers used the modules during the feasibility assessment, and average weekly form submissions ranged from 8 to 234, depending on the health worker and their responsibilities. We also observed variability in the use of modules, requiring consistent monitoring support for health workers. Conclusion: Lessons learnt from this study shaped key global initiatives and resulted in a software global good. The deployment of digital systems requires well-designed applications, change management and strengthening human resources to realize and sustain health system gains.
Assuntos
Sistemas de Informação em Saúde , Bangladesh , Criança , Serviços de Planejamento Familiar , Feminino , Humanos , Indonésia , Recém-Nascido , Paquistão , GravidezRESUMO
OBJECTIVES: Digital adaptation kits (DAKs) distill WHO guidelines for digital use by representing them as workflows, data dictionaries and decision support tables. This paper aims to highlight key lessons learnt in coding data elements of the antenatal care (ANC) and family planning DAKs to standardised classifications and terminologies (CATs). METHODS: We encoded data elements within the ANC and family planning DAKs to standardised CATs from the WHO CATs and other freely available CATs. RESULTS: The coding process demonstrated approaches to refine the data dictionaries and enhance alignment between data elements and CATs. DISCUSSION: Applying CATs to WHO clinical and public health guidelines can ensure that recommendations are operationalised in a digital system with appropriate consistency and clarity. This requires a multidisciplinary team and careful review to achieve conceptual equivalence between data elements and standardised terminologies. CONCLUSION: The systematic translation of guidelines into digital systems provides an opportunity for leveraging CATs; however, this approach needs further exploration into its implementation in country contexts and transition into machine-readable components.
Assuntos
Cuidado Pré-Natal , Gravidez , Feminino , Humanos , Organização Mundial da SaúdeRESUMO
Health workers in low-resource settings often lack the support and tools to follow evidence-based clinical recommendations for diagnosing, treating and managing sick patients. Digital technologies, by combining patient health information and point-of-care diagnostics with evidence-based clinical protocols, can help improve the quality of care and the rational use of resources, and save patient lives. A growing number of electronic clinical decision support algorithms (CDSAs) on mobile devices are being developed and piloted without evidence of safety or impact. Here, we present a target product profile (TPP) for CDSAs aimed at guiding preventive or curative consultations in low-resource settings. This document will help align developer and implementer processes and product specifications with the needs of end users, in terms of quality, safety, performance and operational functionality. To identify the characteristics of CDSAs, a multidisciplinary group of experts (academia, industry and policy makers) with expertise in diagnostic and CDSA development and implementation in low-income and middle-income countries were convened to discuss a draft TPP. The TPP was finalised through a Delphi process to facilitate consensus building. An agreement greater than 75% was reached for all 40 TPP characteristics. In general, experts were in overwhelming agreement that, given that CDSAs provide patient management recommendations, the underlying clinical algorithms should be human-interpretable and evidence-based. Whenever possible, the algorithm's patient management output should take into account pretest disease probabilities and likelihood ratios of clinical and diagnostic predictors. In addition, validation processes should at a minimum show that CDSAs are implementing faithfully the evidence they are based on, and ideally the impact on patient health outcomes. In terms of operational needs, CDSAs should be designed to fit within clinic workflows and function in connectivity-challenged and high-volume settings. Data collected through the tool should conform to local patient privacy regulations and international data standards.