Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dose Response ; 10(1): 108-19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22423234

RESUMO

A controlled redox environment is essential for vascular cell maturation and function. During aging, an imbalance occurs, leading to endothelial dysfunction. We hypothesized that, according to the concept of hormesis, exposure to physiologic oxidative stress during the maturation phase of the endothelium will activate protective pathways involved in stress resistance. C57Bl/6 mice were treated with the polyphenol catechin for the last 3 (post-maturation) or 9 months prior study at 12 months of age. Endothelial dysfunction, assessed by acetylcholine-induced dilations of isolated renal arteries, was present at 12 months (P<0.05). Only the 3-month treatment with catechin fully prevented the decline in efficacy and sensitivity to acetylcholine (P<0.05). Splenocytes adhesion to the native endothelium, expression of CD18 and shedding of CD62L and PSGL-1 augmented in 12 months old mice (P<0.05): only 3-month catechin fully normalized adhesion and prevented the expression of adhesion molecules on splenocytes (P<0.05). Aging was associated with vascular gene alterations, which were prevented by 3-month catechin treatment (P<0.05). In contrast, 9-month catechin further increased COX-2, p22(phox) and reduced MnSOD (P<0.05). In conclusion, we demonstrate a pivotal role of cellular redox equilibrium: exposure to physiologic oxidative stress during the maturation phase of the endothelium is essential for its function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA