Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 107(5): 876-882, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34459949

RESUMO

Lycopodium clavatum sporopollenin exine capsules (SpECs) are known to both adsorb and absorb chemicals. The aim of the present work was to determine whether oestradiol (E2) is 'bioavailable' to bioindicator species, either pre-adsorbed to, or in the presence of, SpECs. SpEC uptake was confirmed for Daphnia magna and Dreissena bugensis. E2 levels varied among treatments for Caenorhabditis elegans though there was no relationship to SpEC load. E2 was not detected in D. bugensis tissues. Expression changes of general stress and E2-specific genes were measured. For C. elegans, NHR-14 expression suggested that SpECs modulate E2 impacts, but not general health responses. For D. magna, SpECs alone and with E2 changed Vtg1 and general stress responses. For D. bugensis, SpECS were taken up but no E2 or change in gene expression was detected after exposure to E2 and/or SpECs. The present study is the first to investigate SpECs and bound chemical dynamics.


Assuntos
Estradiol , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Biopolímeros , Caenorhabditis elegans , Cápsulas , Carotenoides , Daphnia , Poluentes Químicos da Água/toxicidade
2.
Proc Biol Sci ; 286(1901): 20182769, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30991931

RESUMO

Defended species are often conspicuous and this is thought to be an honest signal of defences, i.e. more toxic prey are more conspicuous. Neotropical butterflies of the large Ithomiini tribe numerically dominate communities of chemically defended butterflies and may thus drive the evolution of mimetic warning patterns. Although many species are brightly coloured, most are transparent to some degree. The evolution of transparency from a warning-coloured ancestor is puzzling as it is generally assumed to be involved in concealment. Here, we show that transparent Ithomiini species are indeed less detectable by avian predators (i.e. concealment). Surprisingly, transparent species are not any less unpalatable, and may in fact be more unpalatable than opaque species, the latter spanning a larger range of unpalatability. We put forth various hypotheses to explain the evolution of weak aposematic signals in these butterflies and other cryptic defended prey. Our study is an important step in determining the selective pressures and constraints that regulate the interaction between conspicuousness and unpalatability.


Assuntos
Mimetismo Biológico , Borboletas/fisiologia , Cadeia Alimentar , Pigmentação , Paladar , Animais , Evolução Biológica , Galinhas , Cor , Especificidade da Espécie
3.
BMC Evol Biol ; 16(1): 272, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27978820

RESUMO

BACKGROUND: Aposematic species advertise their unpalatability using warning signals such as striking coloration. Given that predators need to sample aposematic prey to learn that they are unprofitable, prey with similar warning signals share the cost of predator learning. This reduction in predation risk drives evolutionary convergence of warning signals among chemically defended prey (Müllerian mimicry). Whether such warning signal convergence is associated to similar defence levels among co-mimics is still an open question that has rarely been tested in wild populations. We quantified variation in cyanide-based (CN) chemical protection in wild caught individuals of eight aposematic Heliconius butterfly species belonging to four sympatric mimicry rings. We then tested for correlations between chemical protection and ecological species-specific traits. RESULTS: We report significant differences in CN concentrations both within and between sympatric species, even when accounting for the phylogeny, and within and between mimicry rings, even after considering inter-specific variation. We found significant correlations between CN concentration and both hostplant specialization and gregarious behaviour in adults and larvae. However, differences in CN concentrations were not significantly linked to mimicry ring abundance, although the two most toxic species did belong to the rarest mimicry ring. CONCLUSIONS: Our results suggest that mimicry can explain the variation in the levels of chemical defence to a certain extent, although other ecological factors are also relevant to the evolution of such variability.


Assuntos
Evolução Biológica , Mimetismo Biológico , Borboletas , Cianetos/análise , Animais , Borboletas/química , Borboletas/fisiologia , Cianetos/toxicidade , Feminino , Aprendizagem , Masculino , Modelos Biológicos , Comportamento Predatório , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA