Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 22(22): 3173-3177, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34555236

RESUMO

The biologically important, FAD-containing acyl-coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti-1,2-elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4-elimination at C3 and C6 of cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA) to cyclohex-1,5-diene-1-carboxyl-CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl-CoA. Based on high-resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD-N5 to favor the biologically relevant C3,C6- over the C3,C4-dehydrogenation activity. The C1,C2-dehydrogenation activity was regained by structure-inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3-diene building blocks.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Alcadienos/metabolismo , Acil-CoA Desidrogenases/química , Alcadienos/química , Biocatálise , Modelos Moleculares , Estrutura Molecular
2.
J Bacteriol ; 196(20): 3667-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25112478

RESUMO

The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways.


Assuntos
Ácidos Cicloexanocarboxílicos/metabolismo , Geobacter/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Anaerobiose , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Geobacter/genética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA