Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 18(6): 2438-2447, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939443

RESUMO

Since its discovery in 1994, leptin continues to have new potential physiological roles uncovered, including a role in the regulation of blood flow. Leptin's role in regulating blood flow is not completely understood. Red blood cell (RBC)-derived ATP is a recognized stimulus of blood flow, and multiple studies suggest that C-peptide, a hormone secreted in equimolar amounts with insulin from the pancreatic ß-cells, can stimulate that release when delivered by albumin and in combination with Zn2+. Here, we report leptin delivers C-peptide and Zn2+ to RBCs in a saturable and specific manner. We labeled leptin with technetium-99 m (99mTc) to perform binding studies while using albumin to block the specific binding of 99mTc-leptin in the presence or absence of C-peptide. Our results suggest that leptin has a saturable and specific binding site on the RBC ((Kd = 1.79 ± 0.46) × 10-7 M) that is statistically equal to the binding affinity in the presence of 20 nM C-peptide ((Kd = 2.05 ± 0.20) × 10-7 M). While the binding affinity between leptin and the RBC did not change with C-peptide, the moles of bound leptin did increase with C-peptide, suggesting a separate binding site on the cell for a leptin/C-peptide complex. The RBC-derived ATP increased in the presence of a leptin/C-peptide/Zn2+ addition, in a concentration-dependent manner. Control RBCs ATP release increased (71 ± 5.6%) in the presence of C-peptide and Zn2+, which increased further to (94 ± 5.6%) in the presence of Zn2+, C-peptide, and leptin.


Assuntos
Trifosfato de Adenosina/metabolismo , Peptídeo C/administração & dosagem , Portadores de Fármacos/farmacologia , Eritrócitos/metabolismo , Leptina/farmacologia , Circulação Sanguínea/efeitos dos fármacos , Portadores de Fármacos/química , Eritrócitos/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Leptina/química , Óxido Nítrico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Tecnécio , Zinco/química
2.
J Org Chem ; 83(15): 8662-8667, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29973045

RESUMO

Trehalosamine (2-amino-2-deoxy-α,α-d-trehalose) is an aminoglycoside with antimicrobial activity against Mycobacterium tuberculosis, and it is also a versatile synthetic intermediate used to access imaging probes for mycobacteria. To overcome inefficient chemical synthesis approaches, we report a two-step chemoenzymatic synthesis of trehalosamine that features trehalose synthase (TreT)-catalyzed glycosylation as the key transformation. Soluble and recyclable immobilized forms of TreT were successfully employed. We demonstrate that chemoenzymatically synthesized trehalosamine can be elaborated to two complementary imaging probes, which label mycobacteria via distinct pathways.


Assuntos
Amino Açúcares/síntese química , Amino Açúcares/metabolismo , Antibacterianos/síntese química , Antibacterianos/metabolismo , Glucosiltransferases/metabolismo , Imagem Molecular , Mycobacterium tuberculosis/metabolismo , Amino Açúcares/química , Antibacterianos/química , Biocatálise , Técnicas de Química Sintética , Glicosilação
3.
Org Biomol Chem ; 14(36): 8598-609, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27560008

RESUMO

Mycobacterium tuberculosis, the etiological agent of human tuberculosis, requires the non-mammalian disaccharide trehalose for growth and virulence. Recently, detectable trehalose analogues have gained attention as probes for studying trehalose metabolism and as potential diagnostic imaging agents for mycobacterial infections. Of particular interest are deoxy-[(18)F]fluoro-d-trehalose ((18)F-FDTre) analogues, which have been suggested as possible positron emission tomography (PET) probes for in vivo imaging of M. tuberculosis infection. Here, we report progress toward this objective, including the synthesis and conformational analysis of four non-radioactive deoxy-[(19)F]fluoro-d-trehalose ((19)F-FDTre) analogues, as well as evaluation of their uptake by M. smegmatis. The rapid synthesis and purification of several (19)F-FDTre analogues was accomplished in high yield using a one-step chemoenzymatic method. Conformational analysis of the (19)F-FDTre analogues using NMR and molecular modeling methods showed that fluorine substitution had a negligible effect on the conformation of the native disaccharide, suggesting that fluorinated analogues may be successfully recognized and processed by trehalose metabolic machinery in mycobacteria. To test this hypothesis and to evaluate a possible route for delivery of FDTre probes specifically to mycobacteria, we showed that (19)F-FDTre analogues are actively imported into M. smegmatis via the trehalose-specific transporter SugABC-LpqY. Finally, to demonstrate the applicability of these results to the efficient preparation and use of short-lived (18)F-FDTre PET radiotracers, we carried out (19)F-FDTre synthesis, purification, and administration to M. smegmatis in 1 hour.


Assuntos
Sondas Moleculares/química , Infecções por Mycobacterium/diagnóstico , Tomografia por Emissão de Pósitrons , Trealose/química , Humanos , Sondas Moleculares/farmacocinética , Estrutura Molecular , Mycobacterium smegmatis/isolamento & purificação , Mycobacterium smegmatis/metabolismo , Trealose/análogos & derivados , Trealose/farmacocinética
4.
Carbohydr Res ; 450: 60-66, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28917089

RESUMO

Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/fisiologia , Trealose/metabolismo , Relação Dose-Resposta a Droga , Mycobacterium smegmatis/metabolismo , Transporte Proteico/efeitos dos fármacos
5.
J Vis Exp ; (120)2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28287534

RESUMO

Chemically modified versions of trehalose, or trehalose analogues, have applications in biology, biotechnology, and pharmaceutical science, among other fields. For instance, trehalose analogues bearing detectable tags have been used to detect Mycobacterium tuberculosis and may have applications as tuberculosis diagnostic imaging agents. Hydrolytically stable versions of trehalose are also being pursued due to their potential for use as non-caloric sweeteners and bioprotective agents. Despite the appeal of this class of compounds for various applications, their potential remains unfulfilled due to the lack of a robust route for their production. Here, we report a detailed protocol for the rapid and efficient one-step biocatalytic synthesis of trehalose analogues that bypasses the problems associated with chemical synthesis. By utilizing the thermostable trehalose synthase (TreT) enzyme from Thermoproteus tenax, trehalose analogues can be generated in a single step from glucose analogues and uridine diphosphate glucose in high yield (up to quantitative conversion) in 15-60 min. A simple and rapid non-chromatographic purification protocol, which consists of spin dialysis and ion exchange, can deliver many trehalose analogues of known concentration in aqueous solution in as little as 45 min. In cases where unreacted glucose analogue still remains, chromatographic purification of the trehalose analogue product can be performed. Overall, this method provides a "green" biocatalytic platform for the expedited synthesis and purification of trehalose analogues that is efficient and accessible to non-chemists. To exemplify the applicability of this method, we describe a protocol for the synthesis, all-aqueous purification, and administration of a trehalose-based click chemistry probe to mycobacteria, all of which took less than 1 hour and enabled fluorescence detection of mycobacteria. In the future, we envision that, among other applications, this protocol may be applied to the rapid synthesis of trehalose-based probes for tuberculosis diagnostics. For instance, short-lived radionuclide-modified trehalose analogues (e.g., 18F-modified trehalose) could be used for advanced clinical imaging modalities such as positron emission tomography-computed tomography (PET-CT).


Assuntos
Biocatálise , Química Click/métodos , Trealose/análogos & derivados , Trealose/síntese química , Técnicas Bacteriológicas , Glucosiltransferases , Hidrólise , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA