Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2304110120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155891

RESUMO

Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.


Assuntos
Clostridioides difficile , Clostridioides , Animais , Camundongos , Clostridioides/metabolismo , Clostridioides difficile/metabolismo , Peptidoglicano/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo
2.
J Proteome Res ; 19(4): 1812-1823, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32135063

RESUMO

At groundwater sites contaminated with chlorinated ethenes, fermentable substrates are often added to promote reductive dehalogenation by indigenous or augmented microorganisms. Contemporary bioremediation performance monitoring relies on nucleic acid biomarkers of key organohalide-respiring bacteria, such as Dehalococcoides mccartyi (Dhc). Metagenome sequencing of the commercial, Dhc-containing consortium, SDC-9, identified 12 reductive dehalogenase (RDase) genes, including pceA (two copies), vcrA, and tceA, and allowed for specific detection and quantification of RDase peptides using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Shotgun (i.e., untargeted) proteomics applied to the SDC-9 consortium grown with tetrachloroethene (PCE) and lactate identified 143 RDase peptides, and 36 distinct peptides that covered greater than 99% of the protein-coding sequences of the PceA, TceA, and VcrA RDases. Quantification of RDase peptides using multiple reaction monitoring (MRM) assays with 13C-/15N-labeled peptides determined 1.8 × 103 TceA and 1.2 × 102 VcrA RDase molecules per Dhc cell. The MRM mass spectrometry approach allowed for sensitive detection and accurate quantification of relevant Dhc RDases and has potential utility in bioremediation monitoring regimes.


Assuntos
Chloroflexi , Biodegradação Ambiental , Chloroflexi/genética , Cromatografia Líquida , Dehalococcoides , Metagenoma , Proteômica , Espectrometria de Massas em Tandem
3.
Artigo em Inglês | MEDLINE | ID: mdl-30858202

RESUMO

The quinazolinones are a new class of antibacterials with in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA). The quinazolinones target cell wall biosynthesis and have a unique mechanism of action by binding to the allosteric site of penicillin-binding protein 2a (PBP 2a). We investigated the potential for synergism of a lead quinazolinone with several antibiotics of different classes using checkerboard and time-kill assays. The quinazolinone synergized with ß-lactam antibiotics. The combination of the quinazolinone with commercial piperacillin-tazobactam showed bactericidal synergy at sub-MICs of all three drugs. We demonstrated the efficacy of the triple-drug combination in a mouse MRSA neutropenic thigh infection model. The proposed mechanism for the synergistic activity in MRSA involves inhibition of the ß-lactamase by tazobactam, which protects piperacillin from hydrolysis, which can then inhibit its target, PBP 2. Furthermore, the quinazolinone binds to the allosteric site of PBP 2a, triggering the allosteric response. This leads to the opening of the active site, which, in turn, binds another molecule of piperacillin. In other words, PBP 2a, which is not normally inhibited by piperacillin, becomes vulnerable to inhibition in the presence of the quinazolinone. The collective effect is the impairment of cell wall biosynthesis, with bactericidal consequence. Two crystal structures for complexes of the antibiotics with PBP 2a provide support for the proposed mechanism of action.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Piperacilina/farmacologia , Quinazolinonas/farmacologia , Tazobactam/farmacologia , Antibacterianos/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
4.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt A): 2001-2014, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28435009

RESUMO

The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.


Assuntos
Animais Geneticamente Modificados , Lesões Encefálicas Traumáticas/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Viroses/tratamento farmacológico , Animais , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Humanos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Viroses/enzimologia , Viroses/genética , Viroses/patologia
5.
Antimicrob Agents Chemother ; 60(9): 5581-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401567

RESUMO

The oxadiazole antibacterials target the bacterial cell wall and are bactericidal. We investigated the synergism of ND-421 with the commonly used ß-lactams and non-ß-lactam antibiotics by the checkerboard method and by time-kill assays. ND-421 synergizes well with ß-lactam antibiotics, and it also exhibits a long postantibiotic effect (4.7 h). We also evaluated the in vivo efficacy of ND-421 in a murine neutropenic thigh infection model alone and in combination with oxacillin. ND-421 has in vivo efficacy by itself in a clinically relevant infection model (1.49 log10 bacterial reduction for ND-321 versus 0.36 log10 for linezolid with NRS119) and acts synergistically with ß-lactam antibiotics in vitro and in vivo, and the combination of ND-421 with oxacillin is efficacious in a mouse neutropenic thigh methicillin-resistant Staphylococcus aureus (MRSA) infection model (1.60 log10 bacterial reduction). The activity of oxacillin was potentiated in the presence of ND-421, as the strain would have been resistant to oxacillin otherwise.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxidiazóis/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , beta-Lactamas/farmacologia , Animais , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia
6.
Anal Chem ; 88(3): 1864-70, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26727249

RESUMO

The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ∼ 5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule.


Assuntos
Difusão , Avaliação Pré-Clínica de Medicamentos/instrumentação , Levofloxacino/farmacocinética , Técnicas Analíticas Microfluídicas , Impressão Tridimensional , Animais , Antibacterianos/farmacocinética , Cinética , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Animais , Impressão Tridimensional/instrumentação
7.
Anal Chem ; 87(12): 6335-41, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25973637

RESUMO

This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.


Assuntos
Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas , Poliestirenos/química , Impressão Tridimensional , Adesão Celular , Extratos Celulares/isolamento & purificação , Sobrevivência Celular , Eletrodos , Células Endoteliais/citologia , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Tridimensional/instrumentação
8.
ACS Med Chem Lett ; 11(3): 322-326, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184964

RESUMO

A structure-activity relationship (SAR) for the oxadiazole class of antibacterials was evaluated by syntheses of 72 analogs and determination of the minimal-inhibitory concentrations (MICs) against the ESKAPE panel of bacteria. Selected compounds were further evaluated for in vitro toxicity, plasma protein binding, pharmacokinetics (PK), and a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) infection. Oxadiazole 72c shows potent in vitro antibacterial activity, exhibits low clearance, a high volume of distribution, and 41% oral bioavailability, and shows efficacy in mouse models of MRSA infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA