Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(10): 4050-5, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18316743

RESUMO

Hyperspectral confocal fluorescence imaging provides the opportunity to obtain individual fluorescence emission spectra in small ( approximately 0.03-microm(3)) volumes. Using multivariate curve resolution, individual fluorescence components can be resolved, and their intensities can be calculated. Here we localize, in vivo, photosynthesis-related pigments (chlorophylls, phycobilins, and carotenoids) in wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Cells were excited at 488 nm, exciting primarily phycobilins and carotenoids. Fluorescence from phycocyanin, allophycocyanin, allophycocyanin-B/terminal emitter, and chlorophyll a was resolved. Moreover, resonance-enhanced Raman signals and very weak fluorescence from carotenoids were observed. Phycobilin emission was most intense along the periphery of the cell whereas chlorophyll fluorescence was distributed more evenly throughout the cell, suggesting that fluorescing phycobilisomes are more prevalent along the outer thylakoids. Carotenoids were prevalent in the cell wall and also were present in thylakoids. Two chlorophyll fluorescence components were resolved: the short-wavelength component originates primarily from photosystem II and is most intense near the periphery of the cell; and the long-wavelength component that is attributed to photosystem I because it disappears in mutants lacking this photosystem is of higher relative intensity toward the inner rings of the thylakoids. Together, the results suggest compositional heterogeneity between thylakoid rings, with the inner thylakoids enriched in photosystem I. In cells depleted in chlorophyll, the amount of both chlorophyll emission components was decreased, confirming the accuracy of the spectral assignments. These results show that hyperspectral fluorescence imaging can provide unique information regarding pigment organization and localization in the cell.


Assuntos
Pigmentos Biológicos/metabolismo , Synechocystis/citologia , Synechocystis/metabolismo , Algoritmos , Análise de Variância , Transporte Biológico , Clorofila/deficiência , Microscopia Confocal , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência
2.
Appl Spectrosc ; 63(3): 271-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19281642

RESUMO

Hyperspectral confocal fluorescence microscopy, when combined with multivariate curve resolution (MCR), provides a powerful new tool for improved quantitative imaging of multi-fluorophore samples. Generally, fully non-negatively constrained models are used in the constrained alternating least squares MCR analyses of hyperspectral images since real emission components are expected to have non-negative pure emission spectra and concentrations. However, in this paper, we demonstrate four separate cases in which partially constrained models are preferred over the fully constrained MCR models. These partially constrained MCR models can sometimes be preferred when system artifacts are present in the data or where small perturbations of the major emission components are present due to environmental effects or small geometric changes in the fluorescing species. Here we demonstrate that in the cases of hyperspectral images obtained from multicomponent spherical beads, autofluorescence from fixed lung epithelial cells, fluorescence of quantum dots in aqueous solutions, and images of mercurochrome-stained endosperm portions of a wild-type corn seed, these alternative, partially constrained MCR analyses provide improved interpretability of the MCR solutions. Often the system artifacts or environmental effects are more readily described as first and/or second derivatives of the main emission components in these alternative MCR solutions since they indicate spectral shifts and/or spectral broadening or narrowing of the emission bands, respectively. Thus, this paper serves to demonstrate the need to test alternative partially constrained models when analyzing hyperspectral images with MCR methods.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Análise Multivariada , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Appl Spectrosc ; 58(9): 1065-73, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15479523

RESUMO

Comparisons of prediction models from the new augmented classical least squares (ACLS) and partial least squares (PLS) multivariate spectral analysis methods were conducted using simulated data containing deviations from the idealized model. The simulated data were based on pure spectral components derived from real near-infrared spectra of multicomponent dilute aqueous solutions. Simulated uncorrelated concentration errors, uncorrelated and correlated spectral noise, and nonlinear spectral responses were included to evaluate the methods on situations representative of experimental data. The statistical significance of differences in prediction ability was evaluated using the Wilcoxon signed rank test. The prediction differences were found to be dependent on the type of noise added, the numbers of calibration samples, and the component being predicted. For analyses applied to simulated spectra with noise-free nonlinear response, PLS was shown to be statistically superior to ACLS for most of the cases. With added uncorrelated spectral noise, both methods performed comparably. Using 50 calibration samples with simulated correlated spectral noise, PLS showed an advantage in 3 out of 9 cases, but the advantage dropped to 1 out of 9 cases with 25 calibration samples. For cases with different noise distributions between calibration and validation, ACLS predictions were statistically better than PLS for two of the four components. Also, when experimentally derived correlated spectral error was added, ACLS gave better predictions that were statistically significant in 15 out of 24 cases simulated. On data sets with nonuniform noise, neither method was statistically better, although ACLS usually had smaller standard errors of prediction (SEPs). The varying results emphasize the need to use realistic simulations when making comparisons between various multivariate calibration methods. Even when the differences between the standard error of predictions were statistically significant, in most cases the differences in SEP were small. This study demonstrated that unlike CLS, ACLS is competitive with PLS in modeling nonlinearities in spectra without knowledge of all the component concentrations. This competitiveness is important when maintaining and transferring models for system drift, spectrometer differences, and unmodeled components, since ACLS models can be rapidly updated during prediction when used in conjunction with the prediction augmented classical least squares (PACLS) method, while PLS requires full recalibration.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Análise dos Mínimos Quadrados , Modelos Químicos , Modelos Estatísticos , Análise Multivariada , Análise Espectral/métodos , Artefatos , Simulação por Computador , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA